Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Plants (Basel) ; 11(17)2022 Aug 29.
Article En | MEDLINE | ID: mdl-36079616

Stamen tea from Nelumbo nucifera Gaertn. (or the so-called sacred lotus) is widely consumed, and its flavonoids provide various human health benefits. The method used for tea preparation for consumption, namely the infusion time, may affect the levels of extractable flavonoids, ultimately affecting their biological effects. To date, there is no report on this critical information. Thus, this study aims to determine the kinetics of solid liquid extraction of flavonoid from sacred lotus stamen using the traditional method of preparing sacred lotus stamen tea. Phytochemical composition was also analyzed using high-performance liquid chromatography (HPLC). The antioxidant potential of stamen tea was also determined. The results indicated that the infusion time critically affects the concentrations of flavonoids and the antioxidant capacity of sacred lotus stamen tea, with a minimum infusion time of 5-12 min being required to release the different flavonoids from the tea. The extraction was modeled using second order kinetics. The rate of release was investigated by the glycosylation pattern, with flavonoid diglycosides, e.g., rutin and Kae-3-Rob, being released faster than flavonoid monoglycosides. The antioxidant activity was also highly correlated with flavonoid levels during infusion. Taken together, data obtained here underline that, among others, the infusion time should be considered for the experimental design of future epidemiological studies and/or clinical trials to reach the highest health benefits.

2.
Molecules ; 27(11)2022 Jun 02.
Article En | MEDLINE | ID: mdl-35684520

Nymphaea lotus L. is a potential plant in the Nymphaeaceae family that is well-recognized as an economic and traditional medicinal plant in Thailand and other countries. Its pharmacological and medicinal effects have been confirmed. However, there is no study going deeper into the population level to examine the phytochemical variation and biological activity of each population that benefits phytopharmaceutical and medical applications using this plant as raw material. This study was intensely conducted to complete this important research gap to investigate the flavonoid profiles from its floral parts, the stamen and perianth, as well as the antioxidant potential of the 13 populations collected from every floristic region by (1) analyzing their flavonoid profiles, including the HPLC analysis, and (2) investigating the antioxidant capacity of these populations using three assays to observe different antioxidant mechanisms. The results indicated that the northeastern and northern regions are the most abundant floristic regions, and flavonoids are the main phytochemical class of both stamen and perianth extracts from N. lotus. The stamen offers higher flavonoids and richer antioxidant potential compared with the perianth. This finding is also the first completed report at the population level to describe the significant correlation between the phytochemical profiles in floral parts extracts and the main antioxidant activity, which is mediated by the electron transfer mechanism. The results from the Pearson correlation coefficients between several phytochemicals and different antioxidant assessments highlighted that the antioxidant capability of these extracts is the result of complex phytochemical combinations. The frontier knowledge from these current findings helps to open up doors for phytopharmaceutical industries to discover their preferred populations and floral parts that fit with their targeted products.


Antioxidants , Nymphaea , Antioxidants/analysis , Antioxidants/pharmacology , Flavonoids/pharmacology , Phenols/analysis , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Thailand
3.
Antioxidants (Basel) ; 11(5)2022 May 12.
Article En | MEDLINE | ID: mdl-35624816

Plants of the genus Monochoria have long been utilized in food, cosmetics, and traditional herbal treatments. Thailand has the highest species diversity of this genus and a new member, Monochoria angustifolia (G. X. Wang) Boonkerd & Tungmunnithum has been recently described. This plant is called "Siam Violet Pearl" as a common name or "Khimuk Si Muang Haeng Siam" as its vernacular name with the same meaning in the Thai language. Despite their importance, little research on Monochoria species has been conducted. This study, thus, provides the results to fill in this gap by: (i) determining flavonoid phytochemical profiles of 25 natural populations of M. angustifolia covering the whole floristic regions in Thailand, and (ii) determining antioxidant activity using various antioxidant assays to investigate probable mechanisms. The results revealed that M. angustifolia presents a higher flavonoid content than the outgroup, M. hastata. Our results also revealed that flavonoids might be used to investigate Monochoria evolutionary connections and for botanical authentication. The various antioxidant assays revealed that M. angustifolia extracts preferentially act through a hydrogen atom transfer antioxidant mechanism. Pearson correlation analysis indicated significant correlations, emphasizing that the antioxidant capacity is most probably due to the complex action of several phytochemicals rather than that of a single molecule. Together, these results showed that this new species provide an attractive alternative starting material with phytochemical variety and antioxidant potential for the phytopharmaceutical industry.

4.
Molecules ; 26(15)2021 Jul 27.
Article En | MEDLINE | ID: mdl-34361665

In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.


Anti-Inflammatory Agents/analysis , Antioxidants/analysis , Butylene Glycols/analysis , Cotyledon/chemistry , Flax/chemistry , Furans/analysis , Hypocotyl/chemistry , Lignans/analysis , Plant Extracts/analysis , Biomass , Chromatography, High Pressure Liquid/methods , Cotyledon/metabolism , Culture Media/chemistry , Culture Techniques/methods , Flax/metabolism , Hypocotyl/metabolism , Naphthaleneacetic Acids/pharmacology , Phenols/analysis , Phenylurea Compounds/pharmacology , Plant Growth Regulators/pharmacology , Thiadiazoles/pharmacology
5.
Front Plant Sci ; 11: 508658, 2020.
Article En | MEDLINE | ID: mdl-33072140

Over the last few decades, methods relating to plant tissue culture have become prevalent within the cosmetic industry. Forecasts predict the cosmetic industry to grow to an annual turnover of around a few hundred billion US dollars. Here we focused on Linum usitatissimum L., a plant that is well-known for its potent cosmetic properties. Following the a) establishment of cell cultures from three distinct initial explant origins (root, hypocotyl, and cotyledon) and b) selection of optimal hormonal concentrations, two in vitro systems (callus vs cell suspensions) were subjected to different light conditions. Phytochemical analysis by UPLC-HRMS not only confirmed high (neo)lignan accumulation capacity of this species with high concentrations of seven newly described (neo)lignans. Evaluation over 30 days revealed strong variations between the two different in vitro systems cultivated under light or dark, in terms of their growth kinetics and phytochemical composition. Additionally, antioxidant (i.e. four different in vitro assays based on hydrogen-atom transfer or electron transfer mechanism) and anti-aging (i.e. four in vitro inhibition potential of the skin remodeling enzymes: elastase, hyaluronidase, collagenase and tyrosinase) properties were evaluated for the two different in vitro systems cultivated under light or dark. A prominent hydrogen-atom transfer antioxidant mechanism was illustrated by the DPPH and ABTS assays. Potent tyrosinase and elastase inhibitory activities were also observed, which was strongly influenced by the in vitro system and light conditions. Statistical treatments of the data showed relationship of some (neo)lignans with these biological activities. These results confirmed the accumulation of flax (neo)lignans in different in vitro systems that were subjected to distinct light conditions. Furthermore, we showed the importance of optimizing these parameters for specific applications within the cosmetic industry.

6.
Antioxidants (Basel) ; 8(8)2019 Aug 14.
Article En | MEDLINE | ID: mdl-31416140

Silybum marianum (L.) Gaertn. (aka milk thistle) constitutes the source of silymarin (SILM), a mixture of different flavonolignans and represents a unique model for their extraction. Here we report on the development and validation of an ultrasound-assisted extraction (UAE) method of S. marianum flavonolignans follow by their quantification using LC system. The optimal conditions of this UAE method were: aqueous EtOH 54.5% (v/v) as extraction solvent, with application of an ultrasound (US) frequency of 36.6 kHz during 60 min at 45 °C with a liquid to solid ratio of 25:1 mL/g dry weight (DW). Following its optimization using a full factorial design, the extraction method was validated according to international standards of the association of analytical communities (AOAC) to ensure precision and accuracy in the quantitation of each component of the SILM mixture. The efficiency of this UAE was compared with maceration protocol. Here, the optimized and validated conditions of the UAE allowed the highest extraction yields of SILM and its constituents in comparison to maceration. During UAE, the antioxidant capacity of the extracts was retained, as confirmed by the in vitro assays CUPRAC (cupric ion reducing antioxidant capacity) and inhibition of AGEs (advanced glycation end products). The skin anti-aging potential of the extract obtained by UAE was also confirmed by the strong in vitro cell-free inhibition capacity of both collagenase and elastase. To summarize, the UAE procedure presented here is a green and efficient method for the extraction and quantification of SILM and its constituents from the fruits of S. marianum, making it possible to generate extracts with attractive antioxidant and anti-aging activities for future cosmetic applications.

7.
J Photochem Photobiol B ; 196: 111505, 2019 Jul.
Article En | MEDLINE | ID: mdl-31129506

Lepidium sativum L. is an important edible, herbaceous plant with huge medicinal value as cardio-protective, hepatoprotective and antitumor agent. This study was designed and performed to investigate biosynthesis of plant's active ingredients in callus cultures of L. sativum in response to the exposure of multi spectral lights. Optimum biomass accumulation (15.36 g/L DW), total phenolic and flavonoid contents (TPC; 47.43 mg/g; TFC; 9.41 mg/g) were recorded in calli placed under white light (24 h) compared to rest of the treatments. Antioxidant enzymatic activities i.e. superoxide dismutase and peroxidase were found optimum in cultures exposed to green light (SOD; 0.054 nM/min/mg FW, POD; 0.501 nM/min/mg FW). Phytochemical analysis further confirmed the potential influence of white light exposure on enhanced production of plant's metabolites. Significant enhancement level of major metabolic compounds such as chlorogenic acid (7.20 mg/g DW), quercetin (22.08 mg/g DW), kaempferol (7.77 mg/g DW) and minor compounds including ferulic acid, sinapic acid, protocatechuic acid, vanillic acid and caffeic acid were recorded in white light compared to control (photoperiod), whereas blue light increased the p-coumaric acid accumulation. Moreover, callus cultures of this plant under white light (24 h) showed highest in vitro based anti-diabetic and antioxidant activities compared to other conditions. Finding of our current study revealed that multi spectral lights are proved to be an effective strategy for enhancing metabolic quantity of antioxidant and anti-diabetic bioactive compounds in callus cultures of L. sativum L.


Antioxidants/chemistry , Hypoglycemic Agents/metabolism , Lepidium sativum/metabolism , Light , Polyphenols/metabolism , Biomass , Chromatography, High Pressure Liquid , Hypoglycemic Agents/analysis , Hypoglycemic Agents/chemistry , Lepidium sativum/growth & development , Peroxidase/metabolism , Phytochemicals/analysis , Plant Cells/metabolism , Plant Cells/radiation effects , Plant Proteins/metabolism , Polyphenols/analysis , Polyphenols/chemistry , Superoxide Dismutase/metabolism
8.
Int J Mol Sci ; 20(7)2019 Apr 11.
Article En | MEDLINE | ID: mdl-30978911

Lepidium sativum L. is a rich source of polyphenols that have huge medicinal and pharmaceutical applications. In the current study, an effective abiotic elicitation strategy was designed for enhanced biosynthesis of polyphenols in callus culture of L. sativum. Callus was exposed to UV-C radiations for different time intervals and various concentrations of melatonin. Secondary metabolites were quantified by using high-performance liquid chromatography (HPLC). Results indicated the total secondary metabolite accumulation of nine quantified compounds was almost three fold higher (36.36 mg/g dry weight (DW)) in melatonin (20 µM) treated cultures, whereas, in response to UV-C (60 min), a 2.5 fold increase (32.33 mg/g DW) was recorded compared to control (13.94 mg/g DW). Metabolic profiling revealed the presence of three major phytochemicals, i.e., chlorogenic acid, kaemferol, and quercetin, in callus culture of L. sativum. Furthermore, antioxidant, antidiabetic, and enzymatic activities of callus cultures were significantly enhanced. Maximum antidiabetic activities (α-glucosidase: 57.84%; α-amylase: 62.66%) were recorded in melatonin (20 µM) treated callus cultures. Overall, melatonin proved to be an effect elicitor compared to UV-C and a positive correlation in these biological activities and phytochemical accumulation was observed. The present study provides a better comparison of both elicitors and their role in the initiation of physiological pathways for enhanced metabolites biosynthesis in vitro callus culture of L. sativum.


Antioxidants/metabolism , Biosynthetic Pathways/radiation effects , Hypoglycemic Agents/metabolism , Lepidium sativum/metabolism , Lepidium sativum/radiation effects , Melatonin/metabolism , Flavonoids/metabolism , Lepidium sativum/enzymology , Metabolome/radiation effects , Phenols/metabolism , Plant Proteins/metabolism , Secondary Metabolism/radiation effects , Ultraviolet Rays
9.
J Plant Physiol ; 236: 74-87, 2019 May.
Article En | MEDLINE | ID: mdl-30928768

The LuPLR1 gene encodes a pinoresinol lariciresinol reductase responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive lignan, highly accumulated in the seedcoat of flax (Linum usitatissimum L.). Abscisic acid (ABA) plays a key role in the regulation of LuPLR1 gene expression and lignan accumulation in both seeds and cell suspensions, which require two cis-acting elements (ABRE and MYB2) for this regulation. Ca2+ is a universal secondary messenger involved in a wide range of physiological processes including ABA signaling. Therefore, Ca2+ may be involved as a mediator of LuPLR1 gene expression and lignan biosynthesis regulation exerted by ABA. To test the potential implication of Ca2+ signaling, a pharmacological approach was conducted using both flax cell suspensions and maturing seed systems coupled with a ß-glucuronidase reporter gene experiment, RT-qPCR analysis, lignan quantification as well as Ca2+ fluorescence imaging. Exogenous ABA application results in an increase in the intracellular Ca2+ cytosolic concentration, originating mainly from the extracellular medium. Promoter-reporter deletion experiments suggest that the ABRE and MYB2 cis-acting elements of the LuPLR1 gene promoter functioned as Ca2+-sensitive sequences involved in the ABA-mediated regulation. The use of specific inhibitors pointed the crucial roles of the Ca2+ sensors calmodulin-like proteins and Ca2+-dependent protein kinases in this regulation. This regulation appeared conserved in the two different studied systems, i.e. cell suspensions and maturing seeds. A calmodulin-like, LuCML15b, identified from gene network analysis is proposed as a key player involved in this signal transduction since RNAi experiments provided direct evidences of this role. Taken together, these results provide new information on the regulation of plant defense and human health-promoting compounds, which could be used to optimize their production.


Abscisic Acid/physiology , Calcium/metabolism , Calmodulin/metabolism , Flax/metabolism , Lignans/biosynthesis , Plant Growth Regulators/physiology , Plant Proteins/metabolism , Signal Transduction , Abscisic Acid/metabolism , Butylene Glycols/metabolism , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant , Glucuronidase/metabolism , Lignans/metabolism , Plant Growth Regulators/metabolism , Protein Kinase C/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Transcriptome
10.
Plants (Basel) ; 8(3)2019 Feb 27.
Article En | MEDLINE | ID: mdl-30818857

Painted nettle (Plectranthus scutellarioides (L.) R.Br.) is an ornamental plant belonging to Lamiaceae family, native of Asia. Its leaves constitute one of the richest sources of trans-rosmarinic acid, a well-known antioxidant and antimicrobial phenolic compound. These biological activities attract interest from the cosmetic industry and the demand for the development of green sustainable extraction processes. Here, we report on the optimization and validation of an ultrasound-assisted extraction (USAE) method using ethanol as solvent. Following preliminary single factor experiments, the identified limiting extraction parameters (i.e., ultrasound frequency, extraction duration, and ethanol concentration) were further optimized using a full factorial design approach. The method was then validated following the recommendations of the association of analytical communities (AOAC) to ensure the precision and accuracy of the method used to quantify trans-rosmarinic acid. Highest trans-rosmarinic acid content was obtained using pure ethanol as extraction solvent following a 45-minute extraction in an ultrasound bath operating at an ultrasound frequency of 30 kHz. The antioxidant (in vitro radical scavenging activity) and antimicrobial (directed toward Staphylococcus aureus ACTT6538) activities were significantly correlated with the trans-rosmarinic acid concentration of the extract evidencing that these key biological activities were retained following the extraction using this validated method. Under these conditions, 110.8 mg/g DW of trans-rosmarinic acid were extracted from lyophilized P. scutellarioides leaves as starting material evidencing the great potential of this renewable material for cosmetic applications. Comparison to other classical extraction methods evidenced a clear benefit of the present USAE method both in terms of yield and extraction duration.

11.
J Agric Food Chem ; 67(7): 1847-1859, 2019 Feb 20.
Article En | MEDLINE | ID: mdl-30681331

Ocimum basilicum L. (Purple basil) is a source of biologically active antioxidant compounds, particularly phenolic acids and anthocyanins. In this study, we have developed a valuable protocol for the establishment of in vitro callus cultures of O. basilicum and culture conditions for the enhanced production of distinct classes of phenylpropanoid metabolites such as hydroxycinnamic acid derivatives (caffeic acid, chicoric acid, rosmarinic acid) and anthocyanins (cyanidin and peonidin). Callus cultures were established by culturing leaf explants on Murashige and Skoog medium augmented with different concentrations of plant growth regulators (PGRs) [thidiazuron (TDZ), α-naphthalene acetic acid (NAA), and 6-benzyl amino purine (BAP)] either alone or in combination with 1.0 mg/L NAA. Among all the above-mentioned PGRs, NAA at 2.5 mg/L led to the highest biomass accumulation (23.2 g/L DW), along with total phenolic (TPP; 210.7 mg/L) and flavonoid (TFP; 196.4 mg/L) production, respectively. HPLC analysis confirmed the differential accumulation of phenolic acid [caffeic acid (44.67 mg/g DW), rosmarinic acid (52.22 mg/g DW), and chicoric acid (43.89 mg/g DW)] and anthocyanins [cyanidin (16.39 mg/g DW) and peonidin (10.77 mg/g DW)] as a function of the PGRs treatment. The highest in vitro antioxidant activity was determined with the ORAC assay as compared to the FRAP assay, suggesting the prominence of the HAT over the ET-based mechanism for the antioxidant action of callus extracts. Furthermore, in vivo results illustrated the protective action of the callus extract to limit the deleterious effects of UV-induced oxidative stress, ROS/RNS production, and membrane integrity in yeast cell culture. Altogether, these results clearly demonstrated the great potential of in vitro callus of O. basilicum as a source of human health-promoting antioxidant phytochemicals.


Anthocyanins/biosynthesis , Antioxidants/pharmacology , Coumaric Acids/metabolism , Ocimum basilicum/metabolism , Radiation-Protective Agents/metabolism , Ultraviolet Rays , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Flavonoids/analysis , Flavonoids/biosynthesis , Oxidative Stress/drug effects , Phenols/analysis , Phenols/metabolism , Phytotherapy , Plant Growth Regulators/pharmacology , Plant Leaves
12.
Int J Mol Sci ; 20(2)2019 Jan 21.
Article En | MEDLINE | ID: mdl-30669669

Isodon rugosus (Wall. ex Benth.) Codd accumulates large amounts of phenolics and pentacyclic triterpenes. The present study deals with the in vitro callus induction from stem and leaf explants of I. rugosus under various plant growth regulators (PGRs) for the production of antioxidant and anti-ageing compounds. Among all the tested PGRs, thidiazuron (TDZ) used alone or in conjunction with α-napthalene acetic acid (NAA) induced highest callogenesis in stem-derived explants, as compared to leaf-derived explants. Stem-derived callus culture displayed maximum total phenolic content and antioxidant activity under optimum hormonal combination (3.0 mg/L TDZ + 1.0 mg/L NAA). HPLC analysis revealed the presence of plectranthoic acid (373.92 µg/g DW), oleanolic acid (287.58 µg/g DW), betulinic acid (90.51 µg/g DW), caffeic acid (91.71 µg/g DW), and rosmarinic acid (1732.61 µg/g DW). Complete antioxidant and anti-aging potential of extracts with very contrasting phytochemical profiles were investigated. Correlation analyses revealed rosmarinic acid as the main contributor for antioxidant activity and anti-aging hyaluronidase, advance glycation end-products inhibitions and SIRT1 activation, whereas, pentacyclic triterpenoids were correlated with elastase, collagenase, and tyrosinase inhibitions. Altogether, these results clearly evidenced the great valorization potential of I. rugosus calli for the production of antioxidant and anti-aging bioactive extracts for cosmetic applications.


Antioxidants/chemistry , Antioxidants/pharmacology , Isodon/chemistry , Isodon/growth & development , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cellular Senescence/drug effects , In Vitro Techniques , Isodon/metabolism , Metabolome , Metabolomics/methods , Molecular Structure , Phenols/chemistry , Secondary Metabolism
13.
J Photochem Photobiol B ; 190: 163-171, 2019 Jan.
Article En | MEDLINE | ID: mdl-30482427

Fagonia indica is one of the commercially vital medicinal plant species. It is well-known for biosynthesis of anticancer phenolics and flavonoids metabolites. The plant has been exploited for in vitro studies and production of vital phytochemicals, however, the synergistic effects of melatonin and lights remains to be investigated. In current study, we have evaluated the synergistic effects of melatonin and different light emitting diodes (LEDs) in callus cultures of F. indica. Both, light and melatonin play vital role in physiological and biochemical processes of plant cell. The highest Fresh weight (FW: 320 g/L) and Dry weight (DW: 20 g/L) was recorded in cultures under white LEDs. Optimum total phenolics content (11.3 µg GAE/mg), total flavonoids content (4.02 µg QAE/mg) and Free radical scavenging activity (97%) was found in cultures grown under white LED and melatonin. Furthermore, cultures maintained under white light were also found with highest levels of phenolic and flavonoids production (total phenolic production; 226.9 µg GAE/mg, Total flavonoid production; 81 µg QAE/mg) than other LED-grown cultures. However, the antioxidant enzymes; Superoxide dismutase (SOD: 0.53 nM/min/mg FW) and Peroxidase (POD:1.18 nM/min/mg FW) were found optimum in cultures grown under blue LED. The HPLC data showed that enhanced total production of metabolites was recorded in cultures under white LED (6.765 µg/mg DW) than other lights and control. The findings of this study comprehend the role of melatonin and influence of light quality on biomass accumulation and production of phytochemicals in callus cultures of F. indica.


Antineoplastic Agents/metabolism , Light , Melatonin/pharmacology , Zygophyllaceae/cytology , Biomass , Cells, Cultured , Flavonoids/analysis , Free Radical Scavengers/analysis , Phenols/analysis , Phytochemicals
14.
Molecules ; 23(10)2018 Oct 10.
Article En | MEDLINE | ID: mdl-30309022

A selective acylation protocol using cerium chloride (CeCl3) as catalyst was applied to functionalize silybinin (1), a natural antioxidant flavonolignan from milk thistle fruit, in order to increase its solubility in lipophilic media while retaining its strong antioxidant activity. The selective esterification of 1 at the position 3-OH with a palmitate acyl chain leading to the formation of the 3-O-palmitoyl-silybin (2) was confirmed by both mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. The antioxidant activity of 1 was at least retained and even increased with the CUPRAC assay designed to estimate the antioxidant activity of both hydrophilic and lipophilic compounds. Finally, the 3-O-palmitoylation of 1, resulting in the formation of 2, also increased its anti-lipoperoxidant activity (i.e., inhibition of conjugated diene production) in two different lipophilic media (bulk oil and o/w emulsion) subjected to accelerated storage test.


Lipids/chemistry , Oxidative Stress/drug effects , Protective Agents/pharmacology , Silybin/chemical synthesis , Silybin/pharmacology , Free Radical Scavengers/chemistry , Lipid Peroxidation , Proton Magnetic Resonance Spectroscopy , Silybin/chemistry , Spectrometry, Mass, Electrospray Ionization
15.
Molecules ; 23(10)2018 Oct 14.
Article En | MEDLINE | ID: mdl-30322184

Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.


Antioxidants/analysis , Flax/growth & development , Oxidative Stress/drug effects , Plant Extracts/analysis , Seeds/growth & development , Antioxidants/chemistry , Antioxidants/pharmacology , Flax/chemistry , Flax/classification , Flax/genetics , Functional Food , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Humans , Lignans/analysis , Lignans/chemistry , Lignans/pharmacology , Lipid Peroxidation/drug effects , Molecular Structure , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Proteins/genetics , Seeds/chemistry , Seeds/classification , Seeds/genetics , Yeasts/drug effects , Yeasts/metabolism
...