Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781967

RESUMEN

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Asunto(s)
Matriz Extracelular , Mucosa Intestinal , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesodermo/metabolismo , Mesodermo/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Morfogénesis , Metaloproteinasas de la Matriz/metabolismo
2.
JCI Insight ; 9(12)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743491

RESUMEN

Juvenile dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I IFN response and autoantibodies. Treatment options are limited due to an incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of patients with JDM at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment toward an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I IFN response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK cells, CD8+ T cells, and γδ T cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.


Asunto(s)
Dermatomiositis , Análisis de la Célula Individual , Humanos , Dermatomiositis/inmunología , Dermatomiositis/genética , Dermatomiositis/sangre , Análisis de la Célula Individual/métodos , Niño , Genómica/métodos , Masculino , Femenino , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Adolescente , Preescolar , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Inmunofenotipificación
3.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370663

RESUMEN

Organoids are powerful models of tissue physiology, yet their applications remain limited due to a lack of complex tissue morphology and high organoid-to-organoid structural variability. To address these limitations we developed a soft, composite yield-stress extracellular matrix that supports freeform 3D bioprinting of cell slurries at tissue-like densities. Combined with a custom piezoelectric printhead, this platform allows more reproducible and complex morphogenesis from uniform and spatially organized organoid "seeds." At 4 °C the material exhibits reversible yield-stress behavior to support long printing times without compromising cell viability. When transferred to cell culture at 37 °C, the material cross-links and exhibits similar viscoelasticity and plasticity to basement membrane extracts such as Matrigel. We use this setup for high-throughput generation of intestinal and salivary gland organoid arrays that are morphologically indistinguishable from those grown in pure Matrigel, but exhibit dramatically improved homogeneity in organoid size, shape, maturation time, and budding efficiency. The reproducibility of organoid structure afforded by this approach increases the sensitivity of assays by orders of magnitude, requiring less input material and reducing analysis times. The flexibility of this approach additionally enabled the fabrication of perfusable intestinal organoid tubes. Combined, these advances lay the foundation for the efficient design of complex tissue morphologies in both space and time.

4.
Nat Cell Biol ; 26(2): 250-262, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38321203

RESUMEN

A key aspect of nutrient absorption is the exquisite division of labour across the length of the small intestine, with individual nutrients taken up at different proximal:distal positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum and ileum. By examining the fine-scale longitudinal transcriptional patterns that span the mouse and human small intestine, we instead identified five domains of nutrient absorption that mount distinct responses to dietary changes, and three regional stem cell populations. Molecular domain identity can be detected with machine learning, which provides a systematic method to computationally identify intestinal domains in mice. We generated a predictive model of transcriptional control of domain identity and validated the roles of Ppar-δ and Cdx1 in patterning lipid metabolism-associated genes. These findings represent a foundational framework for the zonation of absorption across the mammalian small intestine.


Asunto(s)
Duodeno , Intestino Delgado , Humanos , Ratones , Animales , Intestino Delgado/metabolismo , Duodeno/metabolismo , Intestinos , Yeyuno/metabolismo , Íleon/metabolismo , Mamíferos
5.
Genome Biol ; 25(1): 37, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291503

RESUMEN

Sample multiplexing enables pooled analysis during single-cell RNA sequencing workflows, thereby increasing throughput and reducing batch effects. A challenge for all multiplexing techniques is to link sample-specific barcodes with cell-specific barcodes, then demultiplex sample identity post-sequencing. However, existing demultiplexing tools fail under many real-world conditions where barcode cross-contamination is an issue. We therefore developed deMULTIplex2, an algorithm inspired by a mechanistic model of barcode cross-contamination. deMULTIplex2 employs generalized linear models and expectation-maximization to probabilistically determine the sample identity of each cell. Benchmarking reveals superior performance across various experimental conditions, particularly on large or noisy datasets with unbalanced sample compositions.


Asunto(s)
Análisis de la Célula Individual , Análisis de Expresión Génica de una Sola Célula , Análisis de la Célula Individual/métodos , Algoritmos , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986917

RESUMEN

Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1 expression in monocytes as a composite measure of heterogeneous type I interferon activity in disease. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with dysfunctional protein processing and regulation of cell death programming. This analysis separated the ubiquitously expressed type I interferon response into a central hub and revealed previously masked cell states. Together, these findings reveal the coordinated immune dysregulation underpinning JDM and provide novel insight into strategies for restoring balance in immune function.

7.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790430

RESUMEN

A key aspect of nutrient absorption is the exquisite division of labor across the length of the small intestine, with individual classes of micronutrients taken up at different positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum, and ileum. By examining fine-scale longitudinal segmentation of the mouse and human small intestines, we identified transcriptional signatures and upstream regulatory factors that define five domains of nutrient absorption, distinct from the three traditional sections. Spatially restricted expression programs were most prominent in nutrient-absorbing enterocytes but initially arose in intestinal stem cells residing in three regional populations. While a core signature was maintained across mice and humans with different diets and environments, domain properties were influenced by dietary changes. We established the functions of Ppar-ẟ and Cdx1 in patterning lipid metabolism in distal domains and generated a predictive model of additional transcription factors that direct domain identity. Molecular domain identity can be detected with machine learning, representing the first systematic method to computationally identify specific intestinal regions in mice. These findings provide a foundational framework for the identity and control of longitudinal zonation of absorption along the proximal:distal small intestinal axis.

8.
Proc Natl Acad Sci U S A ; 120(42): e2303774120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816052

RESUMEN

Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.


Asunto(s)
Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Adipocitos/metabolismo , Neoplasias de la Mama/patología , Células Endoteliales/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Rosiglitazona/farmacología
9.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643009

RESUMEN

The gastrointestinal tract relies on the production, maturation, and transit of mucin to protect against pathogens and to lubricate the epithelial lining. Although the molecular and cellular mechanisms that regulate mucin production and movement are beginning to be understood, the upstream epithelial signals that contribute to mucin regulation remain unclear. Here, we report that the inflammatory cytokine tumor necrosis factor (TNF), generated by the epithelium, contributes to mucin homeostasis by regulating both cell differentiation and cystic fibrosis transmembrane conductance regulator (CFTR) activity. We used genetic mouse models and noninflamed samples from patients with inflammatory bowel disease (IBD) undergoing anti-TNF therapy to assess the effect of in vivo perturbation of TNF. We found that inhibition of epithelial TNF promotes the differentiation of secretory progenitor cells into mucus-producing goblet cells. Furthermore, TNF treatment and CFTR inhibition in intestinal organoids demonstrated that TNF promotes ion transport and luminal flow via CFTR. The absence of TNF led to slower gut transit times, which we propose results from increased mucus accumulation coupled with decreased luminal fluid pumping. These findings point to a TNF/CFTR signaling axis in the adult intestine and identify epithelial cell-derived TNF as an upstream regulator of mucin homeostasis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Mucinas , Humanos , Animales , Ratones , Mucinas/genética , Mucinas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Inhibidores del Factor de Necrosis Tumoral , Células Epiteliales/metabolismo , Diferenciación Celular , Factores de Necrosis Tumoral , Homeostasis
10.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37425793

RESUMEN

Tissue folding generates structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, the numerous finger-like protrusions that are essential for nutrient absorption. However, the molecular and mechanical mechanisms driving the initiation and morphogenesis of villi remain a matter of debate. Here, we identify an active mechanical mechanism that simultaneously patterns and folds intestinal villi. We find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. At the cell-level, this occurs through a process dependent upon matrix metalloproteinase-mediated tissue fluidization and altered cell-ECM adhesion. By combining computational models with in vivo experiments, we reveal these cellular features manifest at the tissue-level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active de-wetting of a thin liquid film.

11.
bioRxiv ; 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37425903

RESUMEN

Tissues comprise ordered arrangements of cells that can be surprisingly disordered in their details. How the properties of single cells and their microenvironment contribute to the balance between order and disorder at the tissue-scale remains poorly understood. Here, we address this question using the self-organization of human mammary organoids as a model. We find that organoids behave like a dynamic structural ensemble at the steady state. We apply a maximum entropy formalism to derive the ensemble distribution from three measurable parameters - the degeneracy of structural states, interfacial energy, and tissue activity (the energy associated with positional fluctuations). We link these parameters with the molecular and microenvironmental factors that control them to precisely engineer the ensemble across multiple conditions. Our analysis reveals that the entropy associated with structural degeneracy sets a theoretical limit to tissue order and provides new insight for tissue engineering, development, and our understanding of disease progression.

12.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131803

RESUMEN

Gene regulatory networks within cells modulate the expression of the genome in response to signals and changing environmental conditions. Reconstructions of gene regulatory networks can reveal the information processing and control principles used by cells to maintain homeostasis and execute cell-state transitions. Here, we introduce a computational framework, D-SPIN, that generates quantitative models of gene-regulatory networks from single-cell mRNA-seq data sets collected across thousands of distinct perturbation conditions. D-SPIN models the cell as a collection of interacting gene-expression programs, and constructs a probabilistic model to infer regulatory interactions between gene-expression programs and external perturbations. Using large Perturb-seq and drug-response datasets, we demonstrate that D-SPIN models reveal the organization of cellular pathways, sub-functions of macromolecular complexes, and the logic of cellular regulation of transcription, translation, metabolism, and protein degradation in response to gene knockdown perturbations. D-SPIN can also be applied to dissect drug response mechanisms in heterogeneous cell populations, elucidating how combinations of immunomodulatory drugs can induce novel cell states through additive recruitment of gene expression programs. D-SPIN provides a computational framework for constructing interpretable models of gene-regulatory networks to reveal principles of cellular information processing and physiological control.

13.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090649

RESUMEN

Single-cell sample multiplexing technologies function by associating sample-specific barcode tags with cell-specific barcode tags, thereby increasing sample throughput, reducing batch effects, and decreasing reagent costs. Computational methods must then correctly associate cell-tags with sample-tags, but their performance deteriorates rapidly when working with datasets that are large, have imbalanced cell numbers across samples, or are noisy due to cross-contamination among sample tags - unavoidable features of many real-world experiments. Here we introduce deMULTIplex2, a mechanism-guided classification algorithm for multiplexed scRNA-seq data that successfully recovers many more cells across a spectrum of challenging datasets compared to existing methods. deMULTIplex2 is built on a statistical model of tag read counts derived from the physical mechanism of tag cross-contamination. Using generalized linear models and expectation-maximization, deMULTIplex2 probabilistically infers the sample identity of each cell and classifies singlets with high accuracy. Using Randomized Quantile Residuals, we show the model fits both simulated and real datasets. Benchmarking analysis suggests that deMULTIplex2 outperforms existing algorithms, especially when handling large and noisy single-cell datasets or those with unbalanced sample compositions.

14.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080161

RESUMEN

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Asunto(s)
Conducta de Masa , Neoplasias , Humanos , Comunicación
15.
Nat Biotechnol ; 41(11): 1557-1566, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36879006

RESUMEN

Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microfluídica , Humanos , Animales , Ratones , Microfluídica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Genómica/métodos , Transcriptoma/genética
16.
Tissue Eng Part A ; 29(3-4): 80-92, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36181350

RESUMEN

The construction of three-dimensional (3D) microvascular networks with defined structures remains challenging. Emerging bioprinting strategies provide a means of patterning endothelial cells (ECs) into the geometry of 3D microvascular networks, but the microenvironmental cues necessary to promote their self-organization into cohesive and perfusable microvessels are not well known. To this end, we reconstituted microvessel formation in vitro by patterning thin lines of closely packed ECs fully embedded within a 3D extracellular matrix (ECM) and observed how different microenvironmental parameters influenced EC behaviors and their self-organization into microvessels. We found that the inclusion of fibrillar matrices, such as collagen I, into the ECM positively influenced cell condensation into extended geometries such as cords. We also identified the presence of a high-molecular-weight protein(s) in fetal bovine serum that negatively influenced EC condensation. This component destabilized cord structure by promoting cell protrusions and destabilizing cell-cell adhesions. Endothelial cords cultured in the presence of fibrillar collagen and in the absence of this protein activity were able to polarize, lumenize, incorporate mural cells, and support fluid flow. These optimized conditions allowed for the construction of branched and perfusable microvascular networks directly from patterned cells in as little as 3 days. These findings reveal important design principles for future microvascular engineering efforts based on bioprinting and micropatterning techniques. Impact statement Bioprinting is a potential strategy to achieve microvascularization in engineered tissues. However, the controlled self-organization of patterned endothelial cells into perfusable microvasculature remains challenging. We used DNA Programmed Assembly of Cells to create cell-dense, capillary-sized cords of endothelial cells with complete control over their structure. We optimized the matrix and media conditions to promote self-organization and maturation of these endothelial cords into stable and perfusable microvascular networks.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Ingeniería de Tejidos/métodos , Microvasos/metabolismo , Matriz Extracelular/metabolismo
17.
Nat Cell Biol ; 24(12): 1739-1753, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456828

RESUMEN

Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand-receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme-substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Secretasas de la Proteína Precursora del Amiloide/genética , Ligandos
18.
Sci Transl Med ; 14(660): eabi8633, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044598

RESUMEN

Environmental enteropathy (EE) is a subclinical condition of the small intestine that is highly prevalent in low- and middle-income countries. It is thought to be a key contributing factor to childhood malnutrition, growth stunting, and diminished oral vaccine responses. Although EE has been shown to be the by-product of a recurrent enteric infection, its full pathophysiology remains unclear. Here, we mapped the cellular and molecular correlates of EE by performing high-throughput, single-cell RNA-sequencing on 33 small intestinal biopsies from 11 adults with EE in Lusaka, Zambia (eight HIV-negative and three HIV-positive), six adults without EE in Boston, United States, and two adults in Durban, South Africa, which we complemented with published data from three additional individuals from the same clinical site. We analyzed previously defined bulk-transcriptomic signatures of reduced villus height and decreased microbial translocation in EE and showed that these signatures may be driven by an increased abundance of surface mucosal cells-a gastric-like subset previously implicated in epithelial repair in the gastrointestinal tract. In addition, we determined cell subsets whose fractional abundances associate with EE severity, small intestinal region, and HIV infection. Furthermore, by comparing duodenal EE samples with those from three control cohorts, we identified dysregulated WNT and MAPK signaling in the EE epithelium and increased proinflammatory cytokine gene expression in a T cell subset highly expressing a transcriptional signature of tissue-resident memory cells in the EE cohort. Together, our work elucidates epithelial and immune correlates of EE and nominates cellular and molecular targets for intervention.


Asunto(s)
Infecciones por VIH , Enfermedades Intestinales , Adulto , Niño , Infecciones por VIH/patología , Humanos , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/patología , Mucosa Intestinal/metabolismo , Sudáfrica , Zambia
19.
Acta Biomater ; 150: 265-276, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35926780

RESUMEN

The balance between stem cell renewal and differentiation is determined by the interplay between intrinsic cellular controls and extrinsic factors presented by the microenvironment, or 'niche'. Previous studies on cultured human epidermis have utilised suspension culture and restricted cell spreading to investigate regulation of differentiation in single keratinocytes. However, keratinocytes are typically adherent to neighbouring cells in vivo. We therefore developed experimental models to investigate the combined effects of cell-ECM adhesion and cell-cell contact. We utilized lipid-modified oligonucleotides to form clusters of keratinocytes which were subsequently placed in suspension to induce terminal differentiation. In this experimental model cell-cell contact had no effect on suspension-induced differentiation of keratinocytes. We next developed a high-throughput platform for robust geometrical confinement of keratinocytes to hexagonal ECM-coated islands permitting direct cell-cell contact between single cells. As in the case of circular islands, differentiation was stimulated on the smallest single hexagonal islands. However, the percentage of involucrin-positive cells on small bowtie islands was significantly lower than on single islands, demonstrating that cell-cell contact reduced differentiation in response to decreased substrate adhesion. None of the small bowtie islands contained two involucrin-positive cells. Rather, if one cell was involucrin-positive the other was involucrin-negative. This suggests that there is intrinsic asymmetry in the effect of cell-cell contact in decreasing differentiation. Thus, our reductionist approaches provide new insights into the effect of the niche on keratinocyte differentiation. STATEMENT OF SIGNIFICANCE: Stem cell behaviour is regulated by a combination of external signals, including the nature of the adhesive substrate and cell-cell interactions. An understanding of how different signals are integrated creates the possibility of developing new biomaterials to promote tissue regeneration and broaden our understanding of skin diseases such as eczema and psoriasis, in which stem cell proliferation and differentiation are perturbed. In this study we have applied two methods to engineer intercellular adhesion of human epidermal stem cells, one involving lipid-modified DNA and the other involving hexagonal micropatterns. We show that the effect of cell-cell adhesion depends on cell-substrate adhesion and uncover evidence that two cells in equivalent environments can nevertheless behave differently.


Asunto(s)
Epidermis , Queratinocitos , Diferenciación Celular , Células Cultivadas , Epidermis/metabolismo , Humanos , Queratinocitos/metabolismo , Lípidos/farmacología , Células Madre
20.
Cell Syst ; 13(8): 644-664.e8, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35863345

RESUMEN

The rise and fall of estrogen and progesterone across menstrual cycles and during pregnancy regulates breast development and modifies cancer risk. How these hormones impact each cell type in the breast remains poorly understood because they act indirectly through paracrine networks. Using single-cell analysis of premenopausal breast tissue, we reveal a network of coordinated transcriptional programs representing the tissue-level response to changing hormone levels. Our computational approach, DECIPHER-seq, leverages person-to-person variability in breast composition and cell state to uncover programs that co-vary across individuals. We use differences in cell-type proportions to infer a subset of programs that arise from direct cell-cell interactions regulated by hormones. Further, we demonstrate that prior pregnancy and obesity modify hormone responsiveness through distinct mechanisms: obesity reduces the proportion of hormone-responsive cells, whereas pregnancy dampens the direct response of these cells to hormones. Together, these results provide a comprehensive map of the cycling human breast.


Asunto(s)
Mama , Progesterona , Mama/metabolismo , Comunicación Celular , Estrógenos/metabolismo , Femenino , Humanos , Obesidad/metabolismo , Embarazo , Progesterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...