Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
PLoS Genet ; 19(6): e1010445, 2023 06.
Article En | MEDLINE | ID: mdl-37352370

Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.


Mucins , Pulmonary Disease, Chronic Obstructive , Humans , Mucins/genetics , Mucins/metabolism , Sputum/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Mucus/metabolism , Phenotype
2.
Genome Med ; 13(1): 66, 2021 04 21.
Article En | MEDLINE | ID: mdl-33883027

BACKGROUND: The large airway epithelial barrier provides one of the first lines of defense against respiratory viruses, including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2 virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and genetic factors influencing COVID-19-relevant bronchial epithelial gene expression. METHODS: We analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants. RESULTS: We found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS evidence for their potential role in respiratory infections. CONCLUSIONS: These data provide evidence that clinically relevant variation in the expression of COVID-19-related genes is associated with host factors, environmental exposures, and likely host genetic variation.


Bronchi , COVID-19/genetics , Respiratory Mucosa , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Asthma/genetics , COVID-19/immunology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Gene Expression , Genetic Variation , Humans , Middle Aged , Obesity/genetics , Obesity/immunology , Pulmonary Disease, Chronic Obstructive/genetics , Quantitative Trait Loci , Risk Factors , Smoking/genetics
3.
Chest ; 155(5): 908-917, 2019 05.
Article En | MEDLINE | ID: mdl-30684474

BACKGROUND: Chronic respiratory symptoms and exacerbation-like events are common among ever-smokers without airflow limitation on spirometry. The pathobiology of respiratory disease in this subgroup remains poorly defined, but may be due to underlying inflammation that overlaps with COPD or asthma. We hypothesized that symptoms, exacerbations, and functional measures of disease severity among smokers with preserved spirometry would be associated with markers of systemic inflammation, similar to what is reported in bone fide COPD, rather than elevated type 2 inflammation, which is often present in asthma. METHODS: We measured inflammatory markers associated with COPD (C-reactive protein [CRP], fibrinogen, soluble tumor necrosis factor receptors [sTNFRSF1A and sTNFRSF1B], and blood/sputum neutrophils) and type 2 inflammation (IgE and blood/sputum eosinophils) in smokers with preserved spirometry (postbronchodilator FEV1/FVC ≥ 0.70) from the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). We evaluated the relationship of these markers with respiratory symptom burden (dichotomized by a COPD assessment test score cutoff of 10, diagnosis of chronic bronchitis), exacerbations, 6-minute walk distance, and lung function on the basis of FEV1. RESULTS: CRP was associated with increased symptom burden (on the basis of COPD assessment test score and diagnosis of chronic bronchitis) and a greater number of exacerbations in the year before study enrollment. sTNFRSF1A was associated with symptom burden on the basis of COPD assessment test score. CRP and sTNFRSF1A levels negatively correlated with 6-minute walk distance. IgE and eosinophils were not associated with these outcomes. CONCLUSIONS: Markers of inflammation including CRP and sTNFRSF1A are enriched among symptomatic smokers with preserved spirometry, suggesting an overlap with the underlying pathophysiology of COPD.


Biomarkers , Inflammation , Pulmonary Disease, Chronic Obstructive , Smoking , Spirometry/methods , Asthma/diagnosis , Asthma/immunology , Asthma/physiopathology , Biomarkers/analysis , Biomarkers/blood , C-Reactive Protein/immunology , Female , Fibrinogen/immunology , Humans , Immunoglobulin E/blood , Inflammation/blood , Inflammation/etiology , Longitudinal Studies , Male , Middle Aged , Outcome Assessment, Health Care , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/physiopathology , Receptors, Tumor Necrosis Factor, Type I/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Severity of Illness Index , Smoking/adverse effects , Smoking/immunology , Symptom Assessment/methods , United States/epidemiology
4.
Am J Respir Crit Care Med ; 197(3): 313-324, 2018 02 01.
Article En | MEDLINE | ID: mdl-29064281

RATIONALE: Quantification of type 2 inflammation provided a molecular basis for heterogeneity in asthma. Non-type 2 pathways that contribute to asthma pathogenesis are not well understood. OBJECTIVES: To identify dysregulated pathways beyond type 2 inflammation. METHODS: We applied RNA sequencing to airway epithelial brushings obtained from subjects with stable mild asthma not on corticosteroids (n = 19) and healthy control subjects (n = 16). Sequencing reads were mapped to human and viral genomes. In the same cohort, and in a separate group with severe asthma (n = 301), we profiled blood gene expression with microarrays. MEASUREMENTS AND MAIN RESULTS: In airway brushings from mild asthma on inhaled corticosteroids, RNA sequencing yielded 1,379 differentially expressed genes (false discovery rate < 0.01). Pathway analysis revealed increased expression of type 2 markers, IFN-stimulated genes (ISGs), and endoplasmic reticulum (ER) stress-related genes. Airway epithelial ISG expression was not associated with type 2 inflammation in asthma or with viral transcripts but was associated with reduced lung function by FEV1 (ρ = -0.72; P = 0.0004). ER stress was confirmed by an increase in XBP1 (X-box binding protein 1) splicing in mild asthma and was associated with both type 2 inflammation and ISG expression. ISGs were also the most activated genes in blood cells in asthma and were correlated with airway ISG expression (ρ = 0.55; P = 0.030). High blood ISG expression in severe asthma was similarly unrelated to type 2 inflammation. CONCLUSIONS: ISG activation is prominent in asthma, independent of viral transcripts, orthogonal to type 2 inflammation, and associated with distinct clinical features. ER stress is associated with both type 2 inflammation and ISG expression.


Asthma/genetics , Asthma/physiopathology , Endoplasmic Reticulum/genetics , Gene Expression Regulation , Interferon Regulatory Factor-3/genetics , Adult , Case-Control Studies , Eosinophils/immunology , Female , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Oxidative Stress/genetics , RNA/genetics , Reference Values , Sensitivity and Specificity , Signal Transduction
5.
Ann Am Thorac Soc ; 15(Suppl 4): S234-S238, 2018 12.
Article En | MEDLINE | ID: mdl-30758998

Chronic obstructive pulmonary disease (COPD) is now well recognized to be a phenotypically heterogeneous disease, and this heterogeneity is underpinned by biological heterogeneity. An "endotype" is a group of patients who share the same observed characteristic(s) because of shared underlying biology, and the "endotype" concept has emerged as one way of bringing order to this phenotypic heterogeneity by focusing on its biological underpinnings. In principle, biomarkers can help identify endotypes and mark these specific groups of patients as suitable candidates for targeted biological therapies. Among the better-described endotypes of COPD are alpha-1 antitrypsin deficiency and eosinophilic COPD. Both of these endotypes have biomarkers and at least some evidence of preferential benefit from targeted therapy. Other biological pathways that may define endotypes of COPD include more general pathways of type 2 inflammation, IL-17-driven inflammation (due to autoimmunity or deposition of nanoparticulate carbon black), bacterial colonization, pathological alterations of the airway mucus gel, and others that are beyond the scope of this review. Whether these biological pathways ultimately are found to segregate patients into very distinct endotypes or subsets (like alpha-1 antitrypsin deficiency) or, instead, are present as "treatable traits" in various combinations is uncertain. However imperfect, the endotype concept forces a focus on heterogeneity at a biological level, and the development of biomarkers of biological heterogeneity should help advance the goal of developing new therapies for COPD.


Eosinophilia , Inflammation , Pulmonary Disease, Chronic Obstructive/classification , alpha 1-Antitrypsin Deficiency , Biomarkers , Disease Management , Disease Progression , Humans , Phenotype , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Randomized Controlled Trials as Topic
6.
Eur Respir J ; 44(4): 985-93, 2014 Oct.
Article En | MEDLINE | ID: mdl-25142485

Previously, we demonstrated concordance in differentially expressed genes in sarcoidosis blood and lung, implicating shared dysfunction of specific immune pathways. In the present study, we hypothesised that expression levels of candidate genes in sarcoidosis blood could predict and track with disease outcomes longitudinally. We applied Ingenuity Pathway Analysis to a cross-sectional derivation microarray dataset (n=38) to identify canonical pathways and candidate genes associated with sarcoidosis. In a separate longitudinal sarcoidosis cohort (n=103), we serially measured 48 candidate gene transcripts, and assessed their relation to disease chronicity and severity. In the cross-sectional derivation study, pathway analysis showed upregulation of genes related to interferon signalling and the role of pattern recognition receptors, and downregulation of T-cell receptor (TCR) signalling pathways in sarcoidosis. In the longitudinal cohort, factor analysis confirmed coregulation of genes marking these pathways and identified CXCL9 as an additional candidate pathway. CXCL9 and TCR factors discriminated between chronic versus nonprogressive disease, and CXCL9 predicted disease outcomes longitudinally. Interferon factor was similarly increased in both disease phenotypes. Factors associated with lung function decline included decreased TCR factor and increased CXCL9. These findings demonstrate blood transcriptomic signatures reflecting TCR signalling and CXCL9 predict sarcoidosis chronicity and correlate with disease severity longitudinally.


Sarcoidosis/blood , Sarcoidosis/genetics , Transcriptome , Adult , Aged , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged
7.
J Vis Exp ; (48)2011 Feb 20.
Article En | MEDLINE | ID: mdl-21372792

Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively.


Electrodes , Electrophysiology/instrumentation , Spinal Cord/physiology , Animals , Electrophysiology/methods , Extracellular Space , Locomotion/physiology , Mice
...