Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JVS Vasc Sci ; 4: 100093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756656

RESUMEN

Objective: The indication for abdominal aortic aneurysm (AAA) repair is based on a diameter threshold. However, mechanical properties, such as peak wall stress (PWS) and peak wall rupture index (PWRI), influence the individual rupture risk. This study aims to correlate biomechanical and geometrical AAA characteristics during aneurysm growth applying a new linear transformation-based comparison of sequential imaging. Methods: Patients with AAA with two sequential computed tomography angiographies (CTA) were identified from a single-center aortic database. Patient characteristics included age, gender, and comorbidities. Semiautomated segmentation of CTAs was performed using Endosize (Therenva) for geometric variables (diameter, neck configuration, α/ß angle, and vessel tortuosity) and for finite element method A4 Clinics Research Edition (Vascops) for additional variables (intraluminal thrombus [ILT]), vessel volume, PWS, PWRI). Maximum point coordinates from at least one CTA 6 to 24 months before their final were predicted for the final preoperative CTA using linear transformation along fix and validation points to estimate spatial motion. Pearson's correlation and the t test were used for comparison. Results: Thirty-two eligible patients (median age, 70 years) were included. The annual AAA growth rate was 3.7 mm (interquartile range [IQR], 2.25-5.44; P < .001) between CTs. AAA (+17%; P < .001) and ILT (+43%; P < .001) volume, maximum ILT thickness (+35%; P < .001), ß angle (+1.96°; P = .017) and iliac tortuosity (+0.009; P = .012) increased significantly. PWS (+12%; P = .0029) and PWRI (+16%; P < .001) differed significantly between both CTAs. Both mechanical parameters correlated most significantly with the AAA volume increase (r = 0.68 [P < .001] and r = 0.6 [P < .001]). Changes in PWS correlated best with the aneurysm neck configuration. The spatial motion of maximum ILT thickness was 14.4 mm (IQR, 7.3-37.2), for PWS 8.4 mm (IQR, 3.8-17.3), and 11.5 mm (IQR, 5.9-31.9) for PWRI. Here, no significant correlation with any of the aforementioned parameters, patient age, or time interval between CTs were observed. Conclusions: PWS correlates highly significant with vessel volume and aneurysm neck configuration. Spatial motion of maximum ILT thickness, PWS, and PWRI is detectable and predictable and might expose different aneurysm wall segments to maximum stress throughout aneurysm growth. Linear transformation could thus add to patient-specific rupture risk analysis. Clinical Relevance: Abdominal aortic aneurysm rupture risk assessment is a key feature in future individualized therapy approaches for patients, since more and more data are obtained concluding a heterogeneous disease entity that might not be addressed ideally looking only at diameter enlargement. The approach presented in this pilot study demonstrates the feasibility and importance of measuring peak wall stress and rupture risk indices based on predicted and actual position of maximum stress points including intraluminal thrombus.

2.
Elife ; 92020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33063669

RESUMEN

Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrocitos/metabolismo , Placa de Crecimiento/crecimiento & desarrollo , Osteogénesis , Animales , Fenómenos Biomecánicos , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Estrés Mecánico
3.
Sci Rep ; 9(1): 6291, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000733

RESUMEN

Tissues are built of cells integrated in an extracellular matrix (ECM) which provides a three-dimensional (3D) microfiber network with specific sites for cell anchorage. By genetic engineering, motifs from the ECM can be functionally fused to recombinant silk proteins. Such a silk protein, FN-silk, which harbours a motif from fibronectin, has the ability to self-assemble into networks of microfibers under physiological-like conditions. Herein we describe a method by which mammalian cells are added to the silk solution before assembly, and thereby get uniformly integrated between the formed microfibers. In the resulting 3D scaffold, the cells are highly proliferative and spread out more efficiently than when encapsulated in a hydrogel. Elongated cells containing filamentous actin and defined focal adhesion points confirm proper cell attachment to the FN-silk. The cells remain viable in culture for at least 90 days. The method is also scalable to macro-sized 3D cultures. Silk microfibers formed in a bundle with integrated cells are both strong and extendable, with mechanical properties similar to that of artery walls. The described method enables differentiation of stem cells in 3D as well as facile co-culture of several different cell types. We show that inclusion of endothelial cells leads to the formation of vessel-like structures throughout the tissue constructs. Hence, silk-assembly in presence of cells constitutes a viable option for 3D culture of cells integrated in a ECM-like network, with potential as base for engineering of functional tissue.


Asunto(s)
Matriz Extracelular/genética , Fibronectinas/genética , Proteínas Recombinantes/genética , Seda/genética , Animales , Adhesión Celular/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Proliferación Celular/genética , Matriz Extracelular/ultraestructura , Fibronectinas/química , Fibronectinas/ultraestructura , Ingeniería Genética , Humanos , Hidrogeles/química , Proteínas Recombinantes/ultraestructura , Seda/ultraestructura , Células Madre/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 289(5): H2048-58, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16006541

RESUMEN

At autopsy, 13 nonstenotic human left anterior descending coronary arteries [71.5 +/- 7.3 (mean +/- SD) yr old] were harvested, and related anamnesis was documented. Preconditioned prepared strips (n = 78) of segments from the midregion of the left anterior descending coronary artery from the individual layers in axial and circumferential directions were subjected to cyclic quasi-static uniaxial tension tests, and ultimate tensile stresses and stretches were documented. The ratio of outer diameter to total wall thickness was 0.189 +/- 0.014; ratios of adventitia, media, and intima thickness to total wall thickness were 0.4 +/- 0.03, 0.36 +/- 0.03, and 0.27 +/- 0.02, respectively; axial in situ stretch of 1.044 +/- 0.06 decreased with age. Stress-stretch responses for the individual tissues showed pronounced mechanical heterogeneity. The intima is the stiffest layer over the whole deformation domain, whereas the media in the longitudinal direction is the softest. All specimens exhibited small hysteresis and anisotropic and strong nonlinear behavior in both loading directions. The media and intima showed similar ultimate tensile stresses, which are on average three times smaller than ultimate tensile stresses in the adventitia (1,430 +/- 604 kPa circumferential and 1,300 +/- 692 kPa longitudinal). The ultimate tensile stretches are similar for all tissue layers. A recently proposed constitutive model was extended and used to represent the deformation behavior for each tissue type over the entire loading range. The study showed the need to model nonstenotic human coronary arteries with nonatherosclerotic intimal thickening as a composite structure composed of three solid mechanically relevant layers with different mechanical properties. The intima showed significant thickness, load-bearing capacity, and mechanical strength compared with the media and adventitia.


Asunto(s)
Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/fisiopatología , Anciano , Anciano de 80 o más Años , Algoritmos , Anisotropía , Fenómenos Biomecánicos , Femenino , Humanos , Técnicas In Vitro , Precondicionamiento Isquémico , Masculino , Persona de Mediana Edad , Modelos Biológicos , Dinámicas no Lineales , Estrés Mecánico , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA