Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(27): 19041-19053, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38895523

RESUMEN

The ongoing revolution in the plastic sector is the use of renewable and compostable materials obtained from biomass. However, their mechanical strength and thermal stability are generally not sufficient for practical applications. This study investigates the influence of natural additives on the physical-mechanical properties of a new biobased compostable bioplastic, SP-Milk®, produced from milk scraps. To provide this matrix the appropriate mechanical and thermal properties for daily use while leaving its compostability unchanged, the effect of incorporating vegetal fibres and organic particulates into the bulk bioplastic was investigated. Mechanical tests showed that fibres with a length of 2 mm are capable of increasing ductility by up to 97% compared with the original matrix, whereas fibres with a length of 10 mm led to a more effective reinforcement due to the residual resistance effect, increasing the final compressive strain from 20% (original matrix) to 70.9%. The addition of particulate yielded a harder and more resistant material, and the elastic modulus increased by 21%, although with loss of ductility, compared to SP-Milk® alone. The combination of fibres and particles resulted in the preservation of the positive effects of both components, showing a higher elastic modulus (240 ± 20 MPa, compared to 199 ± 12 MPa for the matrix), higher ductility (+50%) and higher strain at failure (+30%), compared with the matrix. Excellent compatibility between the polymeric matrix and both the fibres and the granules was confirmed using scanning electron microscopy. The thermal analysis demonstrated improved thermal stability particularly because of the effect of the combination of granules and fibres. The results validate that natural reinforcement agents are effective and ecologically advantageous.

2.
Materials (Basel) ; 16(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38068086

RESUMEN

Among the emerging photovoltaic (PV) technologies, Dye-Sensitized Solar Cells (DSSCs) appear especially interesting in view of their potential for unconventional PV applications. In particular, DSSCs have been proven to provide excellent performances under indoor illumination, opening the way to their use in the field of low-power devices, such as wearable electronics and wireless sensor networks, including those relevant for application to the rapidly growing Internet of Things technology. Considering the low intensity of indoor light sources, efficient light capture constitutes a pivotal factor in optimizing cell efficiency. Consequently, the development of novel dyes exhibiting intense absorption within the visible range and light-harvesting properties well-matched with the emission spectra of the various light sources becomes indispensable. In this review, we will discuss the current state-of-the-art in the design, synthesis, and application of organic dyes as sensitizers for indoor DSSCs, focusing on the most recent results. We will start by examining the various classes of individual dyes reported to date for this application, organized by their structural features, highlighting their strengths and weaknesses. On the basis of this discussion, we will then draft some potential guidelines in an effort to help the design of this kind of sensitizer. Subsequently, we will describe some alternative approaches investigated to improve the light-harvesting properties of the cells, such as the co-sensitization strategy and the use of concerted companion dyes. Finally, the issue of measurement standardization will be introduced, and some considerations regarding the proper characterization methods of indoor PV systems and their differences compared to (simulated) outdoor conditions will be provided.

3.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678086

RESUMEN

Structures composed of alternating α and ß amino acids can give rise to peculiar secondary structural motifs, which could self-assemble into complex structures of controlled geometries. This work describes the self-assembly properties of an α,ß-peptide, containing three units of syn H2-(2-F-Phe)-h-PheGly-OH, able to self-organize on surfaces into a fascinating supramolecular rope. This material was characterized by AFM, electronic conduction and fluorescence measurements. Molecular dynamics simulations showed that this hexapeptide can self-assemble into an antiparallel ß-sheet layer, stabilized by intermolecular H-bonds, which, in turn, can self-assemble into many side-by-side layers, due to π-π interactions. As a matter of fact, we demonstrated that in this system, the presence of aromatic residues at the intramolecular interface promoted by the alternation of α,ß-amino-acids in the primary sequence, endorses the formation of a super-secondary structure where the aromatic groups are close to each other, conferring to the system good electron conduction properties. This work demonstrates the capability and future potential of designing and fabricating distinctive nanostructures and efficient bioelectronic interfaces based on an α,ß-peptide, by controlling structure and interaction processes beyond those obtained with α- or ß-peptides alone.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159810

RESUMEN

Self-assembly is the most suitable approach to obtaining peptide-based materials on the nano- and mesoscopic scales. Applications span from peptide drugs for personalized therapy to light harvesting and electron conductive media for solar energy production and bioelectronics, respectively. In this study, we will discuss the self-assembly of selected model and bioactive peptides, in particular reviewing our recent work on the formation of peptide architectures of nano- and mesoscopic size in solution and on solid substrates. The hierarchical and cooperative characters of peptide self-assembly will be highlighted, focusing on the structural and dynamical properties of the peptide building blocks and on the nature of the intermolecular interactions driving the aggregation phenomena in a given environment. These results will pave the way for the understanding of the still-debated mechanism of action of an antimicrobial peptide (trichogin GA IV) and the pharmacokinetic properties of a peptide drug (semaglutide) currently in use for the therapy of type-II diabetes.

5.
J Pept Sci ; 28(1): e3356, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34114297

RESUMEN

Synthetic therapeutic peptides (STP) are intensively studied as new-generation drugs, characterized by high purity, biocompatibility, selectivity and stereochemical control. However, most of the studies are focussed on the bioactivity of STP without considering how the formulation actually used for therapy administration could alter the physico-chemical properties of the active principle. The aggregation properties of a 20-mer STP (Ac-His-Ala-Arg-Ile-Lys-D-Pro-Thr-Phe-Arg-Arg-D-Leu-Lys-Trp-Lys-Tyr-Lys-Gly-Lys-Phe-Trp-NH2 ), showing antitumor activity, were investigated by optical spectroscopy and atomic force microscopy imaging, as itself (CIGB552) and in its therapeutic formulation (CIGB552TF). It has found that the therapeutic formulation deeply affects the aggregation properties of the investigated peptide and the morphology of the aggregates formed on mica by deposition of CIGB552 and CIGB552TF millimolar solutions. Molecular dynamics simulations studied the first steps of CIGB552 aggregation under physiological ionic strength conditions (NaCl 150 mM), showing that peptide oligomers, from dimers to tetramers, are preferentially formed in this environment. Interestingly, cell viability assays performed on H-460 cell lines indicate a major antiproliferative activity of the peptide in its therapeutic formulation with respect to the peptide aqueous solution.


Asunto(s)
Simulación de Dinámica Molecular , Fragmentos de Péptidos , Secuencia de Aminoácidos , Péptidos , Análisis Espectral
6.
Chemistry ; 27(8): 2810-2817, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33107646

RESUMEN

External stimuli are potent tools that Nature uses to control protein function and activity. For instance, during viral entry and exit, pH variations are known to trigger large protein conformational changes. In Nature, also the electron transfer (ET) properties of ET proteins are influenced by pH-induced conformational changes. In this work, a pH-controlled, reversible 310 -helix to α-helix conversion (from acidic to highly basic pH values and vice versa) of a peptide supramolecular system built on a gold surface is described. The effect of pH on the ability of the peptide SAM to generate a photocurrent was investigated, with particular focus on the effect of the pH-induced conformational change on photocurrent efficiency. The films were characterized by electrochemical and spectroscopic techniques, and were found to be very stable over time, also in contact with a solution. They were also able to generate current under illumination, with an efficiency that is the highest recorded so far with biomolecular systems.


Asunto(s)
Concentración de Iones de Hidrógeno , Conformación Molecular , Péptidos/química , Oro/química , Conformación Proteica
7.
Int J Biol Macromol ; 163: 817-823, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32653377

RESUMEN

Biomimetic design represents an emerging field for improving knowledge of natural molecules, as well as to project novel artificial tools with specific functions for biosensing. Effective strategies have been exploited to design artificial bioreceptors, taking inspiration from complex supramolecular assemblies. Among them, size-minimization strategy sounds promising to provide bioreceptors with tuned sensitivity, stability, and selectivity, through the ad hoc manipulation of chemical species at the molecular scale. Herein, a novel biomimetic peptide enabling herbicide binding was designed bioinspired to the D1 protein of the Photosystem II of the green alga Chlamydomonas reinhardtii. The D1 protein portion corresponding to the QB plastoquinone binding niche is capable of interacting with photosynthetic herbicides. A 50-mer peptide in the region of D1 protein from the residue 211 to 280 was designed in silico, and molecular dynamic simulations were performed alone and in complex with atrazine. An equilibrated structure was obtained with a stable pocked for atrazine binding by three H-bonds with SER222, ASN247, and HIS272 residues. Computational data were confirmed by fluorescence spectroscopy and circular dichroism on the peptide obtained by automated synthesis. Atrazine binding at nanomolar concentrations was followed by fluorescence spectroscopy, highlighting peptide suitability for optical sensing of herbicides at safety limits.


Asunto(s)
Atrazina/farmacología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/fisiología , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Secuencia de Aminoácidos , Biomimética/métodos , Simulación de Dinámica Molecular , Péptidos/química , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/química , Conformación Proteica , Espectrometría de Fluorescencia , Termodinámica
8.
Angew Chem Int Ed Engl ; 58(22): 7308-7312, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-30908767

RESUMEN

Three building blocks have been designed to chemically link to a gold surface and vertically self-assemble through thymine-adenine hydrogen bonds. Starting from these building blocks, two different films were engineered on gold surface. Film 1 consists of adenine linked to lipoic acid (Lipo-A) to covalently bind to the gold surface, and ZnTPP linked to a thymine (T-ZnTPP). Film 2 has an additional noncovalently linked layer: a helical undecapeptide analogue of the trichogin GA IV peptide, in which four glycines were replaced by four lysines to favor a helical conformation and reduce flexibility and the two extremities were functionalized with thymine and adenine to enable Lipo-A and T-ZnTPP binding, respectively. These films were characterized by electrochemical and spectroscopic techniques, and were very stable over time and when in contact with solution. Under illumination, they could generate current with higher efficiency than similar previously described systems.

9.
Chempluschem ; 84(11): 1688-1696, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31943881

RESUMEN

The influence of conformational dynamics on the self-assembly process of a conformationally constrained analogue of the natural antimicrobial peptide Trichogin GA IV was analysed by spectroscopic methods, microscopy imaging at nanometre resolution, and molecular dynamics simulations. The formation of peptide films at the air/water interface and their deposition on a graphite or a mica substrate were investigated. A combination of experimental evidence with molecular dynamics simulation was used to demonstrate that only the fully developed helical structure of the analogue promotes formation of ordered aggregates that nucleate the growth of micrometric rods, which give rise to homogenous coating over wide regions of the hydrophilic mica. This work proves the influence of helix flexibility on peptide self-organization and orientation on surfaces, key steps in the design of bioinspired organic/inorganic hybrid materials.


Asunto(s)
Silicatos de Aluminio/química , Grafito/química , Lipopéptidos/química , Nanoestructuras/química , Secuencia de Aminoácidos , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Propiedades de Superficie , Agua/química , Difracción de Rayos X
10.
J Phys Chem B ; 122(24): 6305-6313, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29792795

RESUMEN

Peptide self-assembly is ubiquitous in nature. It governs the organization of proteins, controlling their folding kinetics and preserving their structural stability and bioactivity. In this connection, model oligopeptides may give important insights into the molecular mechanisms and elementary forces driving the formation of supramolecular structures. In this contribution, we show that a single residue substitution, that is, Aib (α-aminoisobutyric acid) in place of Ala at position 4 of an -(l-Ala)5-homo-oligomer, strongly alters the aggregation process. In particular, this process is initiated by the formation of small peptide clusters that promote aggregation on the nanometer scale and, through a hierarchical self-assembly, lead to mesoscopic structures of micrometric dimensions. Furthermore, we show that the use of the well-established Langmuir-Blodgett technique represents an effective strategy for coating extended areas of inorganic substrates by densely packed peptide layers, thus paving the way for application of peptide films as templates for biomineralization, biocompatible coating of surfaces, and scaffolds for tissue engineering.


Asunto(s)
Nanoestructuras/química , Oligopéptidos/química , Aire , Ácidos Aminoisobutíricos/química , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Oligopéptidos/metabolismo , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Agua/química
11.
J Pept Sci ; 23(2): 104-116, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28054413

RESUMEN

The role of the conformationally constrained α-aminoisobutyric acid (Aib) residue in the aggregation and self-assembly properties of oligopeptides is discussed, critically reviewing our recent work in the field. In this connection, three significant case studies are presented: (i) aggregation propensity of Aib homo-oligopeptides of different length; (ii) perturbation of the conformational and aggregation properties of Ala-based pentapeptides by a single Aib versus Ala substitution; and (iii) build up of self-assembled monolayers formed by Aib homo-hexapeptide building blocks. The peptides investigated were all functionalized by a fluorescent probe, that is, a naphthyl group in the first case-study and a pyrenyl group in the other two, with the aim at applying optical spectroscopy techniques and evaluating the relevance of aromatic interactions in the aggregation process. Microscopy techniques at nanometric resolution and results of molecular dynamics simulations are also presented to analyze how the conformational properties of the peptide building blocks would affect the morphology of the peptide aggregates from the nanoscale to the mesoscale. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Ácidos Aminoisobutíricos/química , Oligopéptidos/química , Agregado de Proteínas , Secuencia de Aminoácidos , Colorantes Fluorescentes/química , Enlace de Hidrógeno , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Sondas Moleculares/química , Estructura Secundaria de Proteína , Soluciones , Espectrometría de Fluorescencia
12.
Langmuir ; 32(44): 11560-11572, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27689538

RESUMEN

Supported lipid membranes represent an elegant way to design a fluid interface able to mimic the physicochemical properties of biological membranes, with potential biotechnological applications. In this work, a diacyl phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE), functionalized with a thiol group, was immobilized on a gold surface. In this molecule, the thiol group, responsible for the Au-S bond (45 kJ/mol) is located on the phospholipid polar head, letting the hydrophobic chain protrude from the film. This system is widely used in the literature but is no less challenging, since its characterization is not complete, as several discordant data have been obtained. In this work, the film was characterized by cyclic voltammetry blocking experiments, to verify the SAM formation, and by reductive desorption measurements, to estimate the molecular density of DPPTE on the gold surface. This value has been compared to that obtained by quartz crystal microbalance measurements. Ellipsometry and impedance spectroscopy measurements have been performed to obtain information about the monolayer thickness and capacitance. The film morphology was investigated by atomic force microscopy. Finally, Monte Carlo simulations were carried out, in order to gain molecular information about the morphologies of the DPPTE SAM and compare them to the experimental results. We demonstrate that DPPTE molecules, incubated 18 h below the phase transition temperature (T = 41.1 ± 0.4 °C) in ethanol solution, are able to form a self-assembled monolayer on the gold surface, with domain structures of different order, which have never been reported before. Our results make possible rationalization of the scattered results so far obtained on this system, giving a new insight into the formation of phospholipids SAMs on a gold surface.

13.
Talanta ; 150: 440-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26838428

RESUMEN

In this study, we report a novel assay for the combined on site detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA), through a colorimetric biosensing system for AFB1 and a fluorimetric detection for OTA, exploiting the capability of the portable fibre optic spectrometer to perform both analyses. AFB1 was detected using the acetylcholinesterase (AChE) enzyme that is inhibited by this toxin, and the degree of inhibition was quantified by the Ellman's spectrophotometric method, obtaining a detection limit of 10 µg L(-1). OTA quantification was performed by monitoring its intrinsic fluorescence in methanol, reaching a detection limit of 0.1 µg L(-1). In order to successfully apply the analytical tool in the food analysis, immunoaffinity columns were used. Clean-up and quantification of both AFB1 and OTA in millet samples was obtained by HPLC-dedicated AflaOchra-Test HPLC™ (Vicam™) and Afla-OtaCLEAN™ (LC-Tech) immunoaffinity columns, followed by absorption/fluorescence detection. Millet samples which were fortified with both OTA (50 µg kg(-1)) and AFB1 (20 µg kg(-1)), gave recovery values of 100 ± 6% for OTA, and 110 ± 10% for AFB1, using AflaOchra-Test HPLC™. Single OTA clean-up and quantification in wine samples was obtained, using an OchraTest immunoaffinity column (Vicam™), reaching a detection limit of 0.3 µg L(-1) and recovery values between 80% and 120%. These results demonstrated the possibility of employing a single clean-up and a cost-effective, and easy to use analytical system for both AFB1 and OTA detection at µg kg(-1) (ppb) level. Furthermore, in the case of positive samples, they could be analysed further, using standard chromatographic procedures, without any additional clean-up step, since the same extraction procedure of standard method is proposed in our method.


Asunto(s)
Aflatoxina B1/análisis , Análisis de los Alimentos/instrumentación , Contaminación de Alimentos/análisis , Ocratoxinas/análisis , Dispositivos Ópticos , Artefactos , Técnicas Biosensibles , Colorimetría , Fluorometría , Metanol/química , Mijos/química , Fibras Ópticas , Análisis Espectral , Factores de Tiempo , Vino/análisis
14.
Nanoscale ; 7(37): 15495-506, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26274368

RESUMEN

A helical hexapeptide was designed to link in a rigid parallel orientation to a gold surface. The peptide sequence of the newly synthesized compound is characterized by the presence of two 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) residues (positions 1 and 4) to promote a bidentate interaction with the gold surface, two L-Ala residues (positions 2 and 5) and two-aminoisobutyric acid (Aib) residues (positions 3 and 6) to favor a high population of the 310-helix conformation. Furthermore, a ferrocenoyl (Fc) probe was inserted at the N-terminus to investigate the electronic conduction properties of the peptide. X-Ray photoelectron spectroscopy and scanning tunneling microscopy techniques were used to characterize the binding of the peptide to the gold surface and the morphology of the peptide layer, respectively. Several electrochemical (cyclic voltammetry, chronoamperometry, square wave voltammetry) techniques were applied to analyze the electrochemical activity of the Fc probe, along with the influence of the peptide 3D-structure and the peptide layer morphology on electron transfer processes.


Asunto(s)
Oro/química , Sondas Moleculares/química , Péptidos/química , Aminoácidos/química , Propiedades de Superficie , Tiofenos/química , Difracción de Rayos X
15.
Beilstein J Nanotechnol ; 6: 792-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977850

RESUMEN

In this paper, we show that it is possible to synthesize carbon-based three-dimensional networks by adding sulfur, as growth enhancer, during the synthesis process. The obtained material is self-supporting and consists of curved and interconnected carbon nanotubes and to lesser extent of carbon fibers. Studies on the microstructure indicate that the assembly presents a marked variability in the tube external diameter and in the inner structure. We study the relationship between the observed microscopic properties and some potential applications. In particular, we show that the porous nature of the network is directly responsible for the hydrophobic and the lipophilic behavior. Moreover, we used a cut piece of the produced carbon material as working electrode in a standard electrochemical cell and, thus, demonstrating the capability of the system to respond to incident light in the visible and near-ultraviolet region and to generate a photocurrent.

16.
Biomacromolecules ; 15(9): 3412-20, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25105839

RESUMEN

Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexa-histidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac's), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the ß-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.


Asunto(s)
Oro/química , Histidina/química , Nanopartículas del Metal/química , Níquel/química , Péptidos/química
17.
J Phys Chem A ; 118(33): 6674-84, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24901672

RESUMEN

Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.


Asunto(s)
Electrones , Oro/química , Péptidos/química , Técnicas Electroquímicas , Electrodos , Transporte de Electrón , Conformación Molecular , Procesos Fotoquímicos , Espectrometría de Fluorescencia
18.
J Pept Sci ; 20(7): 494-507, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24845474

RESUMEN

Interactions between peptides are relevant from a biomedical point of view, in particular for the role played by their aggregates in different important pathologies, and also because peptide aggregates represent promising scaffolds for innovative materials. In the present article, the aggregation properties of the homo-peptides formed by α-aminoisobutyric acid (U) residues are discussed. The peptides investigated have chain lengths between six and 15 residues and comprise benzyl and naphthyl groups at the N- and C-termini, respectively. Spectroscopic experiments and molecular dynamics simulations show that the shortest homo-peptide, constituted by six U, does not exhibit any tendency to aggregate under the conditions examined. On the other hand, the homologous peptide with 15 U forms very stable and compact aggregates in 70/30(v/v) methanol/water solution. Atomic force microscopy images indicate that these aggregates promote formation of long fibrils once they are deposited on a mica surface. The aggregation phenomenon is mainly due to hydrophobic interactions occurring between very stable helical structures, and the aromatic groups in the peptides seem to play a minor role.


Asunto(s)
Ácidos Aminoisobutíricos/química , Simulación de Dinámica Molecular , Oligopéptidos/química , Microscopía de Fuerza Atómica , Agregado de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
19.
Soft Matter ; 10(15): 2508-19, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24647758

RESUMEN

The aggregation properties of two Ala-based pentapeptides were investigated by spectroscopic techniques and molecular dynamics (MD) simulations. The two peptides, both functionalized at the N-terminus with a pyrenyl group, differ in the insertion of an α-aminoisobutyric acid residue at position 4. We showed that this single modification of the homo-peptide sequence inhibits the aggregation of the pentapeptide in aqueous solutions. Atomic force microscopy imaging revealed that the two peptides form mesoscopic aggregates of very different morphologies when deposited on mica. MD experiments showed that the two peptides have a very different propensity to form ß-pleated sheet structures, as confirmed by our spectroscopic measurements. The implications of these findings for our understanding of the mechanism leading to the formation of amyloid structures, primary responsible for numerous neurodegenerative diseases, are also discussed.


Asunto(s)
Alanina/química , Simulación de Dinámica Molecular , Péptidos/química , Enlace de Hidrógeno , Metanol/química , Microscopía de Fuerza Atómica , Péptidos/metabolismo , Estructura Secundaria de Proteína , Agua/química
20.
Chemphyschem ; 15(1): 64-8, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24273084

RESUMEN

A bioinspired approach is applied to photoelectric conversion devices. A 3(10)-helical hexapeptide bearing a pyrene unit is immobilized on a gold-covered TiO2 surface. The device is integrated for the first time in a dye-sensitized solar cell, exhibiting stability after several measurements. The approach could have promising applications in the field of optoelectronics.


Asunto(s)
Materiales Biomiméticos/química , Oro/química , Péptidos/química , Energía Solar , Titanio/química , Biomimética/métodos , Colorantes/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...