Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764336

RESUMEN

HMGB1 is a key late inflammatory mediator upregulated during air-pollution-induced oxidative stress. Extracellular HMGB1 accumulation in the airways and lungs plays a significant role in the pathogenesis of inflammatory lung injury. Decreasing extracellular HMBG1 levels may restore innate immune cell functions to protect the lungs from harmful injuries. Current therapies for air-pollution-induced respiratory problems are inadequate. Dietary antioxidants from natural sources could serve as a frontline defense against air-pollution-induced oxidative stress and lung damage. Here, a standardized botanical antioxidant composition from Scutellaria baicalensis and Acacia catechu was evaluated for its efficacy in attenuating acute inflammatory lung injury and sepsis. Murine models of disorders, including hyperoxia-exposed, bacterial-challenged acute lung injury, LPS-induced sepsis, and LPS-induced acute inflammatory lung injury models were utilized. The effect of the botanical composition on phagocytic activity and HMGB1 release was assessed using hyperoxia-stressed cultured macrophages. Analyses, such as hematoxylin-eosin (HE) staining for lung tissue damage evaluation, ELISA for inflammatory cytokines and chemokines, Western blot analysis for proteins, including extracellular HMGB1, and bacterial counts in the lungs and airways, were performed. Statistically significant decreases in mortality (50%), proinflammatory cytokines (TNF-α, IL-1ß, IL-6) and chemokines (CINC-3) in serum and bronchoalveolar lavage fluid (BALF), and increased bacterial clearance from airways and lungs; reduced airway total protein, and decreased extracellular HMGB1 were observed in in vivo studies. A statistically significant 75.9% reduction in the level of extracellular HMGB1 and an increase in phagocytosis were observed in cultured macrophages. The compilations of data in this report strongly suggest that the botanical composition could be indicated for oxidative-stress-induced lung damage protection, possibly through attenuation of increased extracellular HMGB1 accumulation.


Asunto(s)
Lesión Pulmonar Aguda , Proteína HMGB1 , Hiperoxia , Animales , Ratones , Lipopolisacáridos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Citocinas , Antioxidantes/farmacología
2.
Sci Adv ; 9(33): eadg6470, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37595035

RESUMEN

To treat unilateral limbal stem cell (LSC) deficiency, we developed cultivated autologous limbal epithelial cells (CALEC) using an innovative xenobiotic-free, serum-free, antibiotic-free, two-step manufacturing process for LSC isolation and expansion onto human amniotic membrane with rigorous quality control in a good manufacturing practices facility. Limbal biopsies were used to generate CALEC constructs, and final grafts were evaluated by noninvasive scanning microscopy and tested for viability and sterility. Cultivated cells maintained epithelial cell phenotype with colony-forming and proliferative capacities. Analysis of LSC biomarkers showed preservation of "stemness." After preclinical development, a phase 1 clinical trial enrolled five patients with unilateral LSC deficiency. Four of these patients received CALEC transplants, establishing preliminary feasibility. Clinical case histories are reported, with no primary safety events. On the basis of these results, a second recruitment phase of the trial was opened to provide longer term safety and efficacy data on more patients.


Asunto(s)
Antibacterianos , Deficiencia de Células Madre Limbares , Humanos , Estudios de Factibilidad , Biopsia , Comercio , Células Epiteliales
3.
Redox Biol ; 60: 102614, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36717349

RESUMEN

Supraphysiological concentrations of oxygen (hyperoxia) can compromise host defense and increase susceptibility to bacterial and viral infections, causing ventilator-associated pneumonia (VAP). Compromised host defense and inflammatory lung injury are mediated, in part, by high extracellular concentrations of HMGB1, which can be decreased by GTS-21, a partial agonist of α7 nicotinic acetylcholine receptor (α7nAChR). Here, we report that a novel α7nAChR agonistic positive allosteric modulator (ago-PAM), GAT107, at 3.3 mg/kg, i.p., significantly decreased animal mortality and markers of inflammatory injury in mice exposed to hyperoxia and subsequently infected with Pseudomonas aeruginosa. The incubation of macrophages with 3.3 µM of GAT107 significantly decreased hyperoxia-induced extracellular HMGB1 accumulation and HMGB1-induced macrophage phagocytic dysfunction. Hyperoxia-compromised macrophage function was correlated with impaired mitochondrial membrane integrity, increased superoxide levels, and decreased manganese superoxide dismutase (MnSOD) activity. This compromised MnSOD activity is due to a significant increase in its level of glutathionylation. The incubation of hyperoxic macrophages with 3.3 µM of GAT107 significantly decreases the levels of glutathionylated MnSOD, and restores MnSOD activity and mitochondrial membrane integrity. Thus, GAT107 restored hyperoxia-compromised phagocytic functions by decreasing HMGB1 release, most likely via a mitochondrial-directed pathway. Overall, our results suggest that GAT107 may be a potential treatment to decrease acute inflammatory lung injury by increasing host defense in patients with VAP.


Asunto(s)
Lesión Pulmonar Aguda , Proteína HMGB1 , Hiperoxia , Neumonía Asociada al Ventilador , Animales , Ratones , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/metabolismo , Neumonía Asociada al Ventilador/microbiología , Receptor Nicotínico de Acetilcolina alfa 7 , Proteína HMGB1/metabolismo , Hiperoxia/metabolismo , Macrófagos/metabolismo , Lesión Pulmonar Aguda/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo
4.
Free Radic Biol Med ; 190: 247-263, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35964839

RESUMEN

Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Hiperoxia , Neumonía , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/metabolismo , Envejecimiento , Antioxidantes/metabolismo , COVID-19/terapia , Humanos , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Pulmón/metabolismo , Oxígeno/metabolismo , Neumonía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
5.
Fortune J Health Sci ; 5: 499-509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37886658

RESUMEN

Inflammatory bowel disease (IBD) affects almost 7 million people worldwide and is increasing in incidence. While the precise pathogenesis of IBD remains unknown, the production of inflammatory cytokines and chemokines play a central role. We have previously found that N, N-dimethylacetamide (DMA), a widely used non-toxic drug excipient, suppresses cytokine and chemokine secretion in vitro and prevents inflammation-induced preterm birth in vivo. Using sandwich enzyme-linked immunosorbent assays (ELISAs), we tested whether DMA attenuates cytokine and chemokine secretion from LPS- or TNFα-stimulated human intestinal epithelial cells and human monocytes and HMGB1 release from RAW 264.7 cells. To test our hypothesis that the mechanism of DMA's effects in in vitro and in vivo models of IBD is inhibition of the NF-κB pathway, we used western blotting to track levels of the nuclear factor kappa B (NF-κB) inhibitory molecule I kappa B alpha (IκBα) in THP-1 human monocytes in the absence or presence of DMA. Finally, we induced colitis in C57Bl/6 mice with dextran sodium sulfate (DSS) and then tested whether i.p injections of DMA at 2.1 g/kg/day attenuates clinical and histopathologic signs of colitis. DMA attenuated cytokine and chemokine release from human intestinal epithelial cells and human monocytes and HMGB1 release from RAW 264.7 cells. Importantly, DMA prevented degradation of IκBα in THP-1 cells, thereby suggesting one mechanism for DMA's effects. Finally, we show here, for the first time, that DMA attenuates clinical and histologic features of DSS-induced colitis. Based on these data, DMA should be further explored in preclinical and clinical trials for its potential as novel drug therapy for IBD.

8.
Mol Med ; 27(1): 79, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34271850

RESUMEN

BACKGROUND: High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms. METHODS: We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR-/-). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1. RESULTS: CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10-8 M) and induced conformational changes that may decrease HMGB1's binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction. CONCLUSIONS: The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.


Asunto(s)
Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Proteína HMGB1/genética , Heparina/análogos & derivados , Macrófagos/inmunología , Macrófagos/metabolismo , Neumonía Bacteriana/etiología , Neumonía Bacteriana/metabolismo , Animales , Carga Bacteriana , Biomarcadores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Heparina/química , Heparina/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Modelos Moleculares , Óxido Nítrico/metabolismo , Fagocitosis/inmunología , Neumonía Bacteriana/patología , Unión Proteica , Células RAW 264.7 , Relación Estructura-Actividad
9.
J Immunotoxicol ; 18(1): 23-29, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33860730

RESUMEN

The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.


Asunto(s)
Compuestos de Bencilideno/farmacología , Tratamiento Farmacológico de COVID-19 , Colinérgicos/farmacología , Inflamación/tratamiento farmacológico , Nicotina/metabolismo , Piridinas/farmacología , SARS-CoV-2/fisiología , Tabaquismo/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Fumar Cigarrillos/efectos adversos , Dexametasona/uso terapéutico , Proteína HMGB1/sangre , Humanos , Pandemias , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
10.
Antioxidants (Basel) ; 10(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477969

RESUMEN

Supplemental oxygen therapy with supraphysiological concentrations of oxygen (hyperoxia; >21% O2) is a life-saving intervention for patients experiencing respiratory distress. However, prolonged exposure to hyperoxia can compromise bacterial clearance processes, due to oxidative stress-mediated impairment of macrophages, contributing to the increased susceptibility to pulmonary infections. This study reports that the activation of the α7 nicotinic acetylcholine receptor (α7nAChR) with the delete allosteric agonistic-positive allosteric modulator, GAT107, decreases the bacterial burden in mouse lungs by improving hyperoxia-induced lung redox imbalance. The incubation of RAW 264.7 cells with GAT107 (3.3 µM) rescues hyperoxia-compromised phagocytic functions in cultured macrophages, RAW 264.7 cells, and primary bone marrow-derived macrophages. Similarly, GAT107 (3.3 µM) also attenuated oxidative stress in hyperoxia-exposed macrophages, which prevents oxidation and hyper-polymerization of phagosome filamentous actin (F-actin) from oxidation. Furthermore, GAT107 (3.3 µM) increases the (1) activity of superoxide dismutase 1; (2) activation of Nrf2 and (3) the expression of heme oxygenase-1 (HO-1) in macrophages exposed to hyperoxia. Overall, these data suggest that the novel α7nAChR compound, GAT107, could be used to improve host defense functions in patients, such as those with COVID-19, who are exposed to prolonged periods of hyperoxia.

11.
Free Radic Biol Med ; 164: 34-43, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33418109

RESUMEN

Fuchs endothelial corneal dystrophy (FECD) is an age-related disease whereby progressive loss of corneal endothelial cells (CEnCs) leads to loss of vision. There is currently a lack of therapeutic interventions as the etiology of the disease is complex, with both genetic and environmental factors. In this study, we have provided further insights into the pathogenesis of the disease, showing a causal relationship between senescence and endothelial-mesenchymal transition (EMT) using in vitro and in vivo models. Ultraviolet A (UVA) light induced EMT and senescence in CEnCs. Senescent cells were arrested in G2/M phase of the cell cycle and responsible for the resulting profibrotic phenotype. Inhibiting ATR signaling and subsequently preventing G2/M arrest attenuated EMT. In vivo, UVA irradiation induced cell cycle re-entry in post mitotic CEnCs, resulting in senescence and fibrosis at 1- and 2-weeks post-UVA. Selectively eliminating senescent cells using the senolytic cocktail of dasatinib and quercetin attenuated UVA-induced fibrosis, highlighting the potential for a new therapeutic intervention for FECD.


Asunto(s)
Distrofia Endotelial de Fuchs , Apoptosis , División Celular , Línea Celular Tumoral , Células Endoteliales , Endotelio Corneal/metabolismo , Fibrosis , Distrofia Endotelial de Fuchs/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Estrés Oxidativo
12.
Mol Med ; 26(1): 98, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33126860

RESUMEN

BACKGROUND: Mechanical ventilation, in combination with supraphysiological concentrations of oxygen (i.e., hyperoxia), is routinely used to treat patients with respiratory distress, such as COVID-19. However, prolonged exposure to hyperoxia compromises the clearance of invading pathogens by impairing macrophage phagocytosis. Previously, we have shown that the exposure of mice to hyperoxia induces the release of the nuclear protein high mobility group box-1 (HMGB1) into the pulmonary airways. Furthermore, extracellular HMGB1 impairs macrophage phagocytosis and increases the mortality of mice infected with Pseudomonas aeruginosa (PA). The aim of this study was to determine whether GTS-21 (3-(2,4-dimethoxybenzylidene) anabaseine), an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, could (1) inhibit hyperoxia-induced HMGB1 release into the airways; (2) enhance macrophage phagocytosis and (3) increase bacterial clearance from the lungs in a mouse model of ventilator-associated pneumonia. METHOD: GTS-21 (0.04, 0.4, and 4 mg/kg) or saline were administered by intraperitoneal injection to mice that were exposed to hyperoxia (≥ 99% O2) and subsequently challenged with PA. RESULTS: The systemic administration of 4 mg/kg i.p. of GTS-21 significantly increased bacterial clearance, decreased acute lung injury and decreased accumulation of airway HMGB1 compared to the saline control. To determine the mechanism of action of GTS-21, RAW 264.7 cells, a macrophage-like cell line, were incubated with different concentrations of GTS-21 in the presence of 95% O2. The phagocytic activity of macrophages was significantly increased by GTS-21 in a dose-dependent manner. In addition, GTS-21 significantly inhibited the cytoplasmic translocation and release of HMGB1 from RAW 264.7 cells and attenuated hyperoxia-induced NF-κB activation in macrophages and mouse lungs exposed to hyperoxia and infected with PA. CONCLUSIONS: Our results indicate that GTS-21 is efficacious in improving bacterial clearance and reducing acute lung injury via enhancing macrophage function by inhibiting the release of nuclear HMGB1. Therefore, the α7nAChR represents a possible pharmacological target to improve the clinical outcome of patients on ventilators by augmenting host defense against bacterial infections.


Asunto(s)
Compuestos de Bencilideno/farmacología , Hiperoxia/inmunología , Macrófagos Alveolares/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Piridinas/farmacología , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Proteína HMGB1/metabolismo , Hiperoxia/dietoterapia , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis/efectos de los fármacos , Pseudomonas aeruginosa , Células RAW 264.7
13.
Mol Med ; 26(1): 63, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600307

RESUMEN

BACKGROUND: Oxygen therapy, using supraphysiological concentrations of oxygen (hyperoxia), is routinely administered to patients who require respiratory support including mechanical ventilation (MV). However, prolonged exposure to hyperoxia results in acute lung injury (ALI) and accumulation of high mobility group box 1 (HMGB1) in the airways. We previously showed that airway HMGB1 mediates hyperoxia-induced lung injury in a mouse model of ALI. Cholinergic signaling through the α7 nicotinic acetylcholine receptor (α7nAChR) attenuates several inflammatory conditions. The aim of this study was to determine whether 3-(2,4 dimethoxy-benzylidene)-anabaseine dihydrochloride, GTS-21, an α7nAChR partial agonist, inhibits hyperoxia-induced HMGB1 accumulation in the airways and circulation, and consequently attenuates inflammatory lung injury. METHODS: Mice were exposed to hyperoxia (≥99% O2) for 3 days and treated concurrently with GTS-21 (0.04, 0.4 and 4 mg/kg, i.p.) or the control vehicle, saline. RESULTS: The systemic administration of GTS-21 (4 mg/kg) significantly decreased levels of HMGB1 in the airways and the serum. Moreover, GTS-21 (4 mg/kg) significantly reduced hyperoxia-induced acute inflammatory lung injury, as indicated by the decreased total protein content in the airways, reduced infiltration of inflammatory monocytes/macrophages and neutrophils into the lung tissue and airways, and improved lung injury histopathology. CONCLUSIONS: Our results indicate that GTS-21 can attenuate hyperoxia-induced ALI by inhibiting extracellular HMGB1-mediated inflammatory responses. This suggests that the α7nAChR represents a potential pharmacological target for the treatment regimen of oxidative inflammatory lung injury in patients receiving oxygen therapy.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Compuestos de Bencilideno/farmacología , Proteína HMGB1/metabolismo , Hiperoxia/complicaciones , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Proteína HMGB1/sangre , Proteína HMGB1/genética , Inmunohistoquímica , Masculino , Ratones , Modelos Biológicos
14.
Clin Pract Cases Emerg Med ; 4(2): 247-250, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32426685

RESUMEN

INTRODUCTION: We present a case of hyperkalemia secondary to excessive dietary intake of hard caramel candies. CASE REPORT: An 88-year-old male who presented with acute abdominal pain and vomiting was found to have hyperkalemia of 6.9 milliequivalents per liter. He was stabilized, treated, and discharged the following day after resolution. The cause was identified as his daily consumption of 200 hard caramel candies. DISCUSSION: The patient had been consuming sugar-free candies, which induced a chronic diarrhea. This led to potassium wasting and augmentation of his home medications. When he transitioned to eating regular caramel candies, he retained too much potassium leading to his presentation. CONCLUSION: While often overlooked, dietary history is a crucial part of history-taking to ensure that the underlying cause for illness is discovered and addressed.

15.
Int J Mol Sci ; 21(3)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024151

RESUMEN

Mechanical ventilation with hyperoxia is the major supportive measure to treat patients with acute lung injury and acute respiratory distress syndrome (ARDS). However, prolonged exposure to hyperoxia can induce oxidative inflammatory lung injury. Previously, we have shown that high levels of airway high-mobility group box 1 protein (HMGB1) mediate hyperoxia-induced acute lung injury (HALI). Using both ascorbic acid (AA, also known as vitamin C) and sulforaphane (SFN), an inducer of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), we tested the hypothesis that dietary antioxidants can mitigate HALI by ameliorating HMGB1-compromised macrophage function in phagocytosis by attenuating hyperoxia-induced extracellular HMGB1 accumulation. Our results indicated that SFN, which has been shown to attenute HALI in mice exposed to hyperoxia, dose-dependently restored hyperoxia-compromised macrophage function in phagocytosis (75.9 ± 3.5% in 0.33 µM SFN versus 50.7 ± 1.8% in dimethyl sulfoxide (DMSO) control, p < 0.05) by reducing oxidative stress and HMGB1 release from cultured macrophages (47.7 ± 14.7% in 0.33 µM SFN versus 93.1 ± 14.6% in DMSO control, p < 0.05). Previously, we have shown that AA enhances hyperoxic macrophage functions by reducing hyperoxia-induced HMGB1 release. Using a mouse model of HALI, we determined the effects of AA on hyperoxia-induced inflammatory lung injury. The i.p. administration of 50 mg/kg of AA to mice exposed to 72 h of ≥98% O2 significantly decreased hyperoxia-induced oxidative and nitrosative stress in mouse lungs. There was a significant decrease in the levels of airway HMGB1 (43.3 ± 12.2% in 50 mg/kg AA versus 96.7 ± 9.39% in hyperoxic control, p < 0.05), leukocyte infiltration (60.39 ± 4.137% leukocytes numbers in 50 mg/kg AA versus 100 ± 5.82% in hyperoxic control, p < 0.05) and improved lung integrity in mice treated with AA. Our study is the first to report that the dietary antioxidants, ascorbic acid and sulforaphane, ameliorate HALI and attenuate hyperoxia-induced macrophage dysfunction through an HMGB1-mediated pathway. Thus, dietary antioxidants could be used as potential treatments for oxidative-stress-induced acute inflammatory lung injury in patients receiving mechanical ventilation.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antioxidantes/administración & dosificación , Suplementos Dietéticos , Proteína HMGB1/metabolismo , Hiperoxia/complicaciones , Macrófagos/metabolismo , Neumonía/prevención & control , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Proteína HMGB1/genética , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo
16.
Biochem Pharmacol ; 176: 113817, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31972169

RESUMEN

Mechanical ventilation (MV) with supraphysiological levels of oxygen (hyperoxia) is a life-saving therapy for the management of patients with respiratory distress. However, a significant number of patients on MV develop ventilator-associated pneumonia (VAP). Previously, we have reported that prolonged exposure to hyperoxia impairs the capacity of macrophages to phagocytize Pseudomonas aeruginosa (PA), which can contribute to the compromised innate immunity in VAP. In this study, we show that the high mortality rate in mice subjected to hyperoxia and PA infection was accompanied by a significant decrease in the airway levels of nitric oxide (NO). Decreased NO levels were found to be, in part, due to a significant reduction in NO release by macrophages upon exposure to PA lipopolysaccharide (LPS). Based on these findings, we postulated that NO supplementation should restore hyperoxia-compromised innate immunity and decrease mortality by increasing the clearance of PA under hyperoxic conditions. To test this hypothesis, cultured macrophages were exposed to hyperoxia (95% O2) in the presence or absence of the NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO). Interestingly, D-NO (up to 37.5 µM) significantly attenuated hyperoxia-compromised macrophage migratory, phagocytic, and bactericidal function. To determine whether the administration of exogenous NO enhances the host defense in bacteria clearance, C57BL/6 mice were exposed to hyperoxia (99% O2) and intranasally inoculated with PA in the presence or absence of D-NO. D-NO (300 µM-800 µM) significantly increased the survival of mice inoculated with PA under hyperoxic conditions, and significantly decreased bacterial loads in the lung and attenuated lung injury. These results suggest the NO donor, D-NO, can improve the clinical outcomes in VAP by augmenting the innate immunity in bacterial clearance. Thus, provided these results can be extrapolated to humans, NO supplementation may represent a potential therapeutic strategy for preventing and treating patients with VAP.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Compuestos Nitrosos/farmacología , Neumonía Asociada al Ventilador/tratamiento farmacológico , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Humanos , Hiperoxia/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/inmunología , Óxido Nítrico/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Neumonía Asociada al Ventilador/inmunología , Neumonía Asociada al Ventilador/microbiología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/fisiología , Células RAW 264.7
17.
Antioxid Redox Signal ; 31(13): 954-993, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31184204

RESUMEN

Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.


Asunto(s)
Alarminas/metabolismo , Proteína HMGB1/metabolismo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Pulmón/metabolismo , Pulmón/patología , Animales , Núcleo Celular/metabolismo , Humanos
18.
Mol Cell Neurosci ; 65: 68-81, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25731829

RESUMEN

Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI. Astrocytes proximal to GCI-containing oligodendrocytes (r<25µm) had significantly (p, 0.05) longer and thicker processes characteristic of activation than distal astrocytes (r>25µm), with a reciprocal linear correlation (m, 90µm(2)) between mean process length and radial distance to the nearest GCI (R(2), 0.7). In primary cell culture studies, α-syn addition caused ERK-dependent activation of rat astrocytes and perinuclear α-syn inclusions in mature (MOSP-positive) rat oligodendrocytes. Activated astrocytes were also observed in close proximity to α-syn deposits in a unilateral rotenone-lesion mouse model. Moreover, unilateral injection of MSA tissue-derived α-syn into the mouse medial forebrain bundle resulted in widespread neuroinflammation in the α-syn-injected, but not sham-injected hemisphere. Taken together, our data suggests that the action of localized concentrations of α-syn may underlie both astrocyte and oligodendrocyte MSA pathological features.


Asunto(s)
Astrocitos/metabolismo , Cuerpos de Inclusión/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar , alfa-Sinucleína/farmacología
19.
Biomolecules ; 4(3): 795-811, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25256602

RESUMEN

In Parkinson's disease and some atypical Parkinson's syndromes, aggregation of the α-synuclein protein (α-syn) has been linked to neurodegeneration. Many triggers for pathological α-syn aggregation have been identified, including port-translational modifications, oxidative stress and raised metal ions, such as Ca2+. Recently, it has been found using cell culture models that transient increases of intracellular Ca2+ induce cytoplasmic α-syn aggregates. Ca2+-dependent α-syn aggregation could be blocked by the Ca2+ buffering agent, BAPTA-AM, or by the Ca2+ channel blocker, Trimethadione. Furthermore, a greater proportion of cells positive for aggregates occurred when both raised Ca2+ and oxidative stress were combined, indicating that Ca2+ and oxidative stress cooperatively promote α-syn aggregation. Current on-going work using a unilateral mouse lesion model of Parkinson's disease shows a greater proportion of calbindin-positive neurons survive the lesion, with intracellular α-syn aggregates almost exclusively occurring in calbindin-negative neurons. These and other recent findings are reviewed in the context of neurodegenerative pathologies and suggest an association between raised Ca2+, α-syn aggregation and neurotoxicity.


Asunto(s)
Calcio/metabolismo , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Espacio Intracelular/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Unión Proteica , Multimerización de Proteína , alfa-Sinucleína/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...