Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(7): 078101, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34459645

RESUMEN

A generic flow distribution network typically does not deliver its load at a uniform rate across a service area, instead oversupplying regions near the nutrient source while leaving downstream regions undersupplied. In this Letter we demonstrate how a local adaptive rule coupling tissue growth with nutrient density results in a flow network that self-organizes to deliver nutrients uniformly. This geometric adaptive rule can be generalized and imported to mechanics-based adaptive models to address the effects of spatial gradients in nutrients or growth factors in tissues.

2.
Phys Rev E ; 99(2-1): 022423, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30934315

RESUMEN

Cells need to reliably sense external ligand concentrations to achieve various biological functions such as chemotaxis or signaling. The molecular recognition of ligands by surface receptors is degenerate in many systems, leading to crosstalk between ligand-receptor pairs. Crosstalk is often thought of as a deviation from optimal specific recognition, as the binding of noncognate ligands can interfere with the detection of the receptor's cognate ligand, possibly leading to a false triggering of a downstream signaling pathway. Here we quantify the optimal precision of sensing the concentrations of multiple ligands by a collection of promiscuous receptors. We demonstrate that crosstalk can improve precision in concentration sensing and discrimination tasks. To achieve superior precision, the additional information about ligand concentrations contained in short binding events of the noncognate ligand should be exploited. We present a proofreading scheme to realize an approximate estimation of multiple ligand concentrations that reaches a precision close to the derived optimal bounds. Our results help rationalize the observed ubiquity of receptor crosstalk in molecular sensing.


Asunto(s)
Modelos Biológicos , Receptores de Superficie Celular/metabolismo , Ligandos
3.
Phys Rev E ; 99(1-1): 012321, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30780355

RESUMEN

The structure of flow networks determines their function under normal conditions as well as their response to perturbative damage. Brain vasculature often experiences transient or permanent occlusions in the finest vessels, but it is not clear how these microclots affect the large-scale blood flow or to what extent they decrease functionality. Motivated by this, we investigate how flow is rerouted after the occlusion of a single edge in networks with a hierarchy in edge conductances. We find that in two-dimensional networks, vessels formed by highly conductive edges serve as barriers to contain the displacement of flow due to a localized perturbation. In this way, the vein provides shielding from damage to surrounding edges. We show that once the conductance of the vein surpasses an initial minimal value, further increasing the conductance can no longer extend the shielding provided by the vein. Rather, the length scale of the shielding is set by the network topology. Upon understanding the effects of a single vein, we investigate the global resilience of networks with complex hierarchical order. We find that a system of veins arranged in a grid is able to modestly increase the overall network resilience, outperforming a parallel vein pattern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA