Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069426

RESUMEN

Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.


Asunto(s)
Epilepsia Refleja , Niño , Animales , Humanos , Ratones , Epilepsia Refleja/genética , Epilepsia Refleja/metabolismo , Etilnitrosourea/toxicidad , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Anticonvulsivantes/farmacología , Encéfalo/metabolismo , Modelos Animales de Enfermedad
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569663

RESUMEN

Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance. Calcium waves are one of the main mechanisms of signal transmission between astrocytes, and in the present study we investigated the features of calcium dynamics in primary cultures of murine cortical astrocytes in physiological aging and hypoxia modeling in vitro. Specifically, we focused on the assessment of calcium network dynamics and the restructuring of the functional network architecture in primary astrocytic cultures. Calcium imaging was performed on days 21 ("young" astrocyte group) and 150 ("old" astrocyte group) of cultures' development in vitro. While the number of active cells and frequency of calcium events were decreased, we observed a reduced degree of correlation in calcium dynamics between neighboring cells, which was accompanied by a reduced number of functionally connected cells with fewer and slower signaling events. At the same time, an increase in the mRNA expression of anti-apoptotic factor Bcl-2 and connexin 43 was observed in "old" astrocytic cultures, which can be considered as a compensatory response of cells with a decreased level of intercellular communication. A hypoxic episode aggravates the depression of the connectivity of calcium dynamics of "young" astrocytes rather than that of "old" ones.


Asunto(s)
Astrocitos , Calcio/metabolismo , Astrocitos/metabolismo , Hipoxia de la Célula , Senescencia Celular , Células Cultivadas , Señalización del Calcio , Ratones Endogámicos C57BL , Animales , Ratones
3.
Front Neuroanat ; 17: 1276325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298831

RESUMEN

The Corpus Callosum (CC) is a bundle of axons connecting the cerebral hemispheres. It is the most recent structure to have appeared during evolution of placental mammals. Its development is controlled by a very complex interplay of many molecules. In humans it contains almost 80% of all commissural axons in the brain. The formation of the CC can be divided into four main stages, each controlled by numerous intracellular and extracellular molecular factors. First, a newborn neuron has to specify an axon, leave proliferative compartments, the Ventricular Zone (VZ) and Subventricular Zone (SVZ), migrate through the Intermediate Zone (IZ), and then settle at the Cortical Plate (CP). During the second stage, callosal axons navigate toward the midline within a compact bundle. Next stage is the midline crossing into contralateral hemisphere. The last step is targeting a defined area and synapse formation. This review provides an insight into these four phases of callosal axons development, as well as a description of the main molecular players involved.

4.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555569

RESUMEN

Accumulated experimental data strongly suggest that astrocytes play an important role in the pathogenesis of neurodegeneration, including Alzheimer's disease (AD). The effect of astrocytes on the calcium activity of neuron-astroglia networks in AD modelling was the object of the present study. We have expanded and improved our approach's capabilities to analyze calcium activity. We have developed a novel algorithm to construct dynamic directed graphs of both astrocytic and neuronal networks. The proposed algorithm allows us not only to identify functional relationships between cells and determine the presence of network activity, but also to characterize the spread of the calcium signal from cell to cell. Our study showed that Alzheimer's astrocytes can change the functional pattern of the calcium activity of healthy nerve cells. When healthy nerve cells were cocultivated with astrocytes treated with Aß42, activation of calcium signaling was found. When healthy nerve cells were cocultivated with 5xFAD astrocytes, inhibition of calcium signaling was observed. In this regard, it seems relevant to further study astrocytic-neuronal interactions as an important factor in the regulation of the functional activity of brain cells during neurodegenerative processes. The approach to the analysis of streaming imaging data developed by the authors is a promising tool for studying the collective calcium dynamics of nerve cells.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Calcio/farmacología , Astrocitos , Calcio de la Dieta/farmacología , Neuronas
5.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077134

RESUMEN

Currently, the role of the neurotrophic factors BDNF and GDNF in maintaining the brain's resistance to the damaging effects of hypoxia and functional recovery of neural networks after exposure to damaging factors are actively studied. The assessment of the effect of an increase in the level of these neurotrophic factors in brain tissues using genetic engineering methods on the resistance of laboratory animals to hypoxia may pave the way for the future clinical use of neurotrophic factors BDNF and GDNF in the treatment of hypoxic damage. This study aimed to evaluate the antihypoxic and neuroprotective properties of BDNF and GDNF expression level increase using adeno-associated viral vectors in modeling hypoxia in vivo. To achieve overexpression of neurotrophic factors in the central nervous system's cells, viral constructs were injected into the brain ventricles of newborn male C57Bl6 (P0) mice. Acute hypobaric hypoxia was modeled on the 30th day after the injection of viral vectors. Survival, cognitive, and mnestic functions in the late post-hypoxic period were tested. Evaluation of growth and weight characteristics and the neurological status of animals showed that the overexpression of neurotrophic factors does not affect the development of mice. It was found that the use of adeno-associated viral vectors increased the survival rate of male mice under hypoxic conditions. The present study indicates that the neurotrophic factors' overexpression, induced by the specially developed viral constructs carrying the BDNF and GDNF genes, is a prospective neuroprotection method, increasing the survival rate of animals after hypoxic injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial , Hipoxia/metabolismo , Neuroprotección , Animales , Encéfalo/metabolismo , Células Cultivadas , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipoxia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Estudios Prospectivos
6.
Brain Sci ; 12(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009102

RESUMEN

The high prevalence of diagnosed cases of severe neurological disorders, a significant proportion of which are epilepsy, contributes to a high level of mortality and disability in the population. Neurotrophic factors BDNF and GNDF are considered promising agents aimed at increasing the central nervous system's adaptive potential for the development of the epileptiform activity. Despite the pronounced neuroprotective and anticonvulsant potential, an appropriate way to stimulate these endogenous signaling molecules with minimal risk of side effects remains an open question. Herein, we assessed the safety of gene therapy using original adeno-associated viral constructs carrying the genes of neurotrophic factors BDNF and GDNF in the early postnatal period of development of experimental animals. The intraventricular injection of AAV-Syn-BDNF-eGFP and AAV-Syn-GDNF-eGFP viral constructs into newborn mice was found to provide persistent overexpression of target genes in the hippocampus and cerebral cortex in vivo for four weeks after injection. The application of viral constructs has a multidirectional effect on the weight and body length characteristics of mice in the early postnatal period; however, it ensures the animals' resistance to the development of seizure activity under audiogenic stimulation in the late postnatal period and preserves basic behavioral reactions, emotional status, as well as the mnestic and cognitive abilities of mice after simulated stress. Our results demonstrated the safety of using the AAV-Syn-BDNF-eGFP and AAV-Syn-GDNF-eGFP viral constructs in vivo, which indicates the expediency of further testing the constructs as therapeutic anticonvulsants.

7.
Aging (Albany NY) ; 13(15): 19108-19126, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34320466

RESUMEN

Insomnia is currently considered one of the potential triggers of accelerated aging. The frequency of registered sleep-wake cycle complaints increases with age and correlates with the quality of life of elderly people. Nevertheless, whether insomnia is actually an age-associated process or whether it acts as an independent stress-factor that activates pathological processes, remains controversial. In this study, we analyzed the effects of long-term sleep deprivation modeling on the locomotor and orienting-exploratory activity, spatial learning abilities and working memory of C57BL/6 female mice of different ages. We also evaluated the modeled stress influence on morphological changes in brain tissue, the functional activity of the mitochondrial apparatus of nerve cells, and the level of DNA methylation and mRNA expression levels of the transcription factor HIF-1α (Hif1) and age-associated molecular marker PLIN2. Our findings point to the age-related adaptive capacity of female mice to the long-term sleep deprivation influence. For young (1.5 months) mice, the modeled sleep deprivation acts as a stress factor leading to weight loss against the background of increased food intake, the activation of animals' locomotor and exploratory activity, their mnestic functions, and molecular and cellular adaptive processes ensuring animal resistance both to stress and risk of accelerated aging development. Sleep deprivation in adult (7-9 months) mice is accompanied by an increase in body weight against the background of active food intake, increased locomotor and exploratory activity, gross disturbances in mnestic functions, and decreased adaptive capacity of brain cells, that potentially increasing the risk of pathological reactions and neurodegenerative processes.


Asunto(s)
Envejecimiento/genética , Encéfalo/patología , Privación de Sueño/genética , Animales , Metilación de ADN , Femenino , Ratones , Ratones Endogámicos C57BL , Privación de Sueño/patología
8.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063823

RESUMEN

The use of vitamin D3 along with traditional therapy opens up new prospects for increasing the adaptive capacity of nerve cells to the effects of a wide range of stress factors, including hypoxia-ischemic processes. However, questions about prophylactic and therapeutic doses of vitamin D3 remain controversial. The purpose of our study was to analyze the effects of vitamin D3 at different concentrations on morpho-functional characteristics of neuron-glial networks in hypoxia modeling in vitro. We showed that a single administration of vitamin D3 at a high concentration (1 µM) in a normal state has no significant effect on the cell viability of primary neuronal cultures; however, it has a pronounced modulatory effect on the functional calcium activity of neuron-glial networks and causes destruction of the network response. Under hypoxia, the use of vitamin D3 (1 µM) leads to total cell death of primary neuronal cultures and complete negation of functional neural network activity. In contrast, application of lower concentrations of vitamin D3 (0.01 µM and 0.1 µM) caused a pronounced dose-dependent neuroprotective effect during the studied post-hypoxic period. While the use of vitamin D3 at a concentration of 0.1 µM maintained cell viability, preventive administration of 0.01 µM not only partially preserved the morphological integrity of primary neuronal cells but also maintained the functional structure and activity of neuron-glial networks in cultures. Possible molecular mechanisms of neuroprotective action of vitamin D3 can be associated with the increased expression level of transcription factor HIF-1α and maintaining the relationship between the levels of BDNF and TrkB expression in cells of primary neuronal cultures.


Asunto(s)
Colecalciferol/farmacología , Hipoxia/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos C57BL , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptor trkB/metabolismo
9.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008451

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia among the elderly. Neuropathologically, AD is characterized by the deposition of a 39- to 42-amino acid long ß-amyloid (Aß) peptide in the form of senile plaques. Several post-translational modifications (PTMs) in the N-terminal domain have been shown to increase the aggregation and cytotoxicity of Aß, and specific Aß proteoforms (e.g., Aß with isomerized D7 (isoD7-Aß)) are abundant in the senile plaques of AD patients. Animal models are indispensable tools for the study of disease pathogenesis, as well as preclinical testing. In the presented work, the accumulation dynamics of Aß proteoforms in the brain of one of the most widely used amyloid-based mouse models (the 5xFAD line) was monitored. Mass spectrometry (MS) approaches, based on ion mobility separation and the characteristic fragment ion formation, were applied. The results indicated a gradual increase in the Aß fraction of isoD7-Aß, starting from approximately 8% at 7 months to approximately 30% by 23 months of age. Other specific PTMs, in particular, pyroglutamylation, deamidation, and oxidation, as well as phosphorylation, were also monitored. The results for mice of different ages demonstrated that the accumulation of Aß proteoforms correlate with the formation of Aß deposits. Although the mouse model cannot be a complete analogue of the processes occurring in the human brain in AD, and several of the observed parameters differ significantly from human values supposedly due to the limited lifespan of the model animals, this dynamic study provides evidence on at least one of the possible mechanisms that can trigger amyloidosis in AD, i.e., the hypothesis on the relationship between the accumulation of isoD7-Aß and the progression of AD-like pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Placa Amiloide/metabolismo
10.
Front Cell Dev Biol ; 8: 582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733889

RESUMEN

Alzheimer's disease (AD) is a widespread chronic neurodegenerative pathology characterized by synaptic dysfunction, partial neuronal death, cognitive decline and memory impairments. The major hallmarks of AD are extracellular senile amyloid plaques formed by various types of amyloid proteins (Aß) and the formation and accumulation of intracellular neurofibrillary tangles. However, there is a lack of relevant experimental models for studying changes in neural network activity, the features of intercellular signaling or the effects of drugs on the functional activity of nervous cells during AD development. In this work, we examined two experimental models of amyloidopathy using primary hippocampal cultures. The first model involves the embryonic brains of 5xFAD mice; the second uses chronic application of amyloid beta 1-42 (Aß1-42). The model based on primary hippocampal cells obtained from 5xFAD mice demonstrated changes in spontaneous network calcium activity characterized by a decrease in the number of cells exhibiting Ca2+ activity, a decrease in the number of Ca2+ oscillations and an increase in the duration of Ca2+ events from day 21 of culture development in vitro. Chronic application of Aß1-42 resulted in the rapid establishment of significant neurodegenerative changes in primary hippocampal cultures, leading to marked impairments in neural network calcium activity and increased cell death. Using this model and multielectrode arrays, we studied the influence of amyloidopathy on spontaneous bioelectrical neural network activity in primary hippocampal cultures. It was shown that chronic Aß application decreased the number of network bursts and spikes in a burst. The spatial structure of neural networks was also disturbed that characterized by reduction in both the number of key network elements (hubs) and connections between network elements. Moreover, application of brain-derived neurotrophic factor (BDNF) recombinant protein and BDNF hyperexpression by an adeno-associated virus vector partially prevented these amyloidopathy-induced neurodegenerative phenomena. BDNF maintained cell viability and spontaneous bioelectrical and calcium network activity in primary hippocampal cultures.

11.
Int J Mol Sci ; 19(8)2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30081596

RESUMEN

Brain-derived neurotrophic factor (BDNF) is one of the key signaling molecules that supports the viability of neural cells in various brain pathologies, and can be considered a potential therapeutic agent. However, several methodological difficulties, such as overcoming the blood⁻brain barrier and the short half-life period, challenge the potential use of BDNF in clinical practice. Gene therapy could overcome these limitations. Investigating the influence of viral vectors on the neural network level is of particular interest because viral overexpression affects different aspects of cell metabolism and interactions between neurons. The present work aimed to investigate the influence of the adeno-associated virus (AAV)-Syn-BDNF-EGFP virus construct on neural network activity parameters in an acute hypobaric hypoxia model in vitro. MATERIALS AND METHODS: An adeno-associated virus vector carrying the BDNF gene was constructed using the following plasmids: AAV-Syn-EGFP, pDP5, DJvector, and pHelper. The developed virus vector was then tested on primary hippocampal cultures obtained from C57BL/6 mouse embryos (E18). Acute hypobaric hypoxia was induced on day 21 in vitro. Spontaneous bioelectrical and calcium activity of neural networks in primary cultures and viability tests were analysed during normoxia and during the posthypoxic period. RESULTS: BDNF overexpression by AAV-Syn-BDNF-EGFP does not affect cell viability or the main parameters of spontaneous bioelectrical activity in normoxia. Application of the developed virus construct partially eliminates the negative hypoxic consequences by preserving cell viability and maintaining spontaneous bioelectrical activity in the cultures. Moreover, the internal functional structure, including the activation pattern of network bursts, the number of hubs, and the number of connections within network elements, is also partially preserved. BDNF overexpression prevents a decrease in the number of cells exhibiting calcium activity and maintains the frequency of calcium oscillations. CONCLUSION: This study revealed the pronounced antihypoxic and neuroprotective effects of AAV-Syn-BDNF-EGFP virus transduction in an acute normobaric hypoxia model.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dependovirus/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Hipoxia/metabolismo , Hipoxia/terapia , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Hipoxia/genética , Hipoxia Encefálica/genética , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/terapia , Ratones , Ratones Endogámicos C57BL , Neuroprotección/genética , Neuroprotección/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...