Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523139

RESUMEN

Organic fluorescence sensor for selectively detecting and quantifying toxic heavy metal ions has received significant interest due to their environmental hazards. Herein, we have designed and synthesized a simple tripodal Schiff base ligand (1) based on hydroxy-naphthaldehyde and tris(2-aminoethyl)amine (TREN) and demonstrated highly selective turn-on fluorescence sensing of Cd2+ ions. The free ligand did not show any fluorescence in DMF. In contrast, Cd2+ (10- 4 M) addition exhibited a strong enhancement of fluorescence at 450 nm. Interestingly, other metal ions including Zn2+, which exhibit similar chemistry, did not show any turn-on fluorescence. The concentration-dependent studies of 1 with Cd2+ showed the detection limit of 6.78 × 10- 8 M. NMR spectra of 1 with Cd2+ and computational studies were performed to understand the mechanism of sense.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121989, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36323083

RESUMEN

Introducing methoxy substituent into triphenylamine-acetophenone based donor-π-acceptor fluorophore, 3-(4-(diphenylamino)phenyl)-1-phenylprop-2-en-1-one (1), produced strong solvatofluorochromism including white light emission, fluorescent polymorphs and mechano-responsive fluorescence switching. The unsubstituted and methoxy substituted compounds displayed strong solvent polarity mediated tunable emission in the solution. Interestingly, 3-(4-(diphenylamino)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (2) and 3-(4-(diphenylamino)-2-methoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (3) showed single molecule white light emission in DMSO and ethanol, respectively. 1-3 exhibited strong green/yellow fluorescence in the solid-state (Quantum yield (Φf) = 10 to 23%). 2 produced fluorescent polymorphs (green (2-G) and yellow (2-Y). Single crystal structural analysis revealed that donor and acceptor phenyl units adopted coplanar conformation in 2-G and 3 whereas twisted molecular conformation in 1 and 2-Y. Further, 2-G exhibited π…π interactions facilitated isolated dimers whereas 2-Y showed well separated molecules in the crystal lattice. Aggregation induced emission (AIE) studies showed morphological transformation induced fluorescence tuning for 2. The intramolecular charge transfer (ICT) from TPA to acetophenone was confirmed by computational studies. Mechanofluorochromic (MFC) studies of 1 showed only slight reduction of intensity without modulating fluorescence wavelength significantly but 2 and 3 exhibited visible emissive colour change from yellow to green and vice versa by crushing and heating. Both 2 and 3 also exhibited self-reversible fluorescence switching that was confirmed by PXRD pattern. Thus, methoxy group introduction resulted in obtaining white light emitting fluorescence molecules in the solution state and self-reversible fluorescence switching materials.


Asunto(s)
Acetofenonas , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Solventes/química , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...