Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832513

RESUMEN

Division plane positioning is crucial for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site-localized proteins, which remain at the division site after the PPB disassembles. Here, we show that the division site-localized protein TANGLED1 (TAN1) is recruited independently of the PPB to the cell cortex by the plant cytokinetic machinery, the phragmoplast, from experiments using both the PPB-defective mutant discordia1 (dcd1) and chemical treatments that disrupt the phragmoplast in maize. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site-localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis.


Asunto(s)
Citocinesis , Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Zea mays/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citoesqueleto de Actina/metabolismo
2.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496554

RESUMEN

Division plane positioning is critical for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site localized proteins, which remain at the division site after the PPB disassembles. Here, we show that a division site localized protein, TANGLED1 (TAN1), is recruited independently of the PPB to the cell cortex at sites, by the plant cytokinetic machinery, the phragmoplast. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis.

3.
Nature ; 604(7905): 337-342, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355021

RESUMEN

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Asunto(s)
Dermatitis Atópica , PPAR gamma , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Obesidad/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Medicina de Precisión , Análisis de Secuencia de ARN , Células Th2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...