Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Cancer Cell ; 42(3): 429-443.e4, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38366589

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I). Deeper investigation into the immune heterogeneity uncovers two subsets with differing neuroendocrine (NE) versus non-neuroendocrine (non-NE) phenotypes, demonstrating immune cell infiltration hallmarks. The NE tumors with low tumor-associated macrophage (TAM) but high T-effector signals demonstrate longer overall survival with PD-L1 blockade and CE versus CE alone than non-NE tumors with high TAM and high T-effector signal. Our study offers a clinically relevant approach to discriminate SCLC patients likely benefitting most from immunotherapies and highlights the complex mechanisms underlying immunotherapy responses.


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/genetics , Immune Checkpoint Inhibitors/therapeutic use , Small Cell Lung Carcinoma/genetics , Carboplatin/therapeutic use , Etoposide/therapeutic use , Immunotherapy
2.
Genome Biol ; 24(1): 118, 2023 05 17.
Article En | MEDLINE | ID: mdl-37198692

Predicting the impact of coding and noncoding variants on splicing is challenging, particularly in non-canonical splice sites, leading to missed diagnoses in patients. Existing splice prediction tools are complementary but knowing which to use for each splicing context remains difficult. Here, we describe Introme, which uses machine learning to integrate predictions from several splice detection tools, additional splicing rules, and gene architecture features to comprehensively evaluate the likelihood of a variant impacting splicing. Through extensive benchmarking across 21,000 splice-altering variants, Introme outperformed all tools (auPRC: 0.98) for the detection of clinically significant splice variants. Introme is available at https://github.com/CCICB/introme .


RNA Splice Sites , RNA Splicing , Humans , Introns , Machine Learning , Mutation
3.
Cancer Cell ; 41(5): 837-852.e6, 2023 05 08.
Article En | MEDLINE | ID: mdl-37086716

Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Memory T Cells , Immunologic Memory , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung , CD8-Positive T-Lymphocytes
4.
Front Oncol ; 13: 1150349, 2023.
Article En | MEDLINE | ID: mdl-36994206

Introduction: Tumour mutational burden (TMB) is an important emerging biomarker for immune checkpoint inhibitors (ICI). The stability of TMB values across distinct EBUS tumour regions is not well defined in advanced lung cancer patients. Methods: This study included a whole-genome sequencing cohort (n=11, LxG cohort) and a targeted Oncomine TML panel cohort (n=10, SxD cohort), where paired primary and metastatic samples were obtained by endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA). Results: The LxG cohort displayed a strong correlation between the paired primary and metastatic sites, with a median TMB score of 7.70 ± 5.39 and 8.31 ± 5.88 respectively. Evaluation of the SxD cohort demonstrated greater inter-tumoural TMB heterogeneity, where Spearman correlation between the primary and metastatic sites fell short of significance. Whilst median TMB scores were not significantly different between the two sites, 3 out of 10 paired samples were discordant when using a TMB cut-off of 10 mutations per Mb. In addition, PD-L1 copy number and KRAS mutations were assessed, demonstrating the feasibility of performing multiple molecular tests relevant to ICI treatment using a single EBUS sample. We also observed good consistency in PD-L1 copy number and KRAS mutation, where cut-off estimates were consistent across the primary and metastatic sites. Conclusions: Assessment of TMB acquired by EBUS from multiple sites is highly feasible and has the potential to improve accuracy of TMB panels as a companion diagnostic test. We demonstrate similar TMB values across primary and metastatic sites, however 3 out of 10 samples displayed inter-tumoural heterogeneity that would alter clinical management.

5.
Eur J Hum Genet ; 30(10): 1121-1131, 2022 10.
Article En | MEDLINE | ID: mdl-35970915

Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.


Exome , Base Sequence , Chromosome Mapping , Humans , Exome Sequencing , Whole Genome Sequencing
6.
Hum Mutat ; 43(12): 1970-1978, 2022 12.
Article En | MEDLINE | ID: mdl-36030551

Primary mitochondrial diseases are a group of genetically and clinically heterogeneous disorders resulting from oxidative phosphorylation (OXPHOS) defects. COX11 encodes a copper chaperone that participates in the assembly of complex IV and has not been previously linked to human disease. In a previous study, we identified that COX11 knockdown decreased cellular adenosine triphosphate (ATP) derived from respiration, and that ATP levels could be restored with coenzyme Q10 (CoQ10 ) supplementation. This finding is surprising since COX11 has no known role in CoQ10 biosynthesis. Here, we report a novel gene-disease association by identifying biallelic pathogenic variants in COX11 associated with infantile-onset mitochondrial encephalopathies in two unrelated families using trio genome and exome sequencing. Functional studies showed that mutant COX11 fibroblasts had decreased ATP levels which could be rescued by CoQ10 . These results not only suggest that COX11 variants cause defects in energy production but reveal a potential metabolic therapeutic strategy for patients with COX11 variants.


Mitochondrial Diseases , Mitochondrial Encephalomyopathies , Humans , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Copper Transport Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Electron Transport Chain Complex Proteins/metabolism
7.
Neurology ; 99(7): e730-e742, 2022 08 16.
Article En | MEDLINE | ID: mdl-35641312

BACKGROUND AND OBJECTIVES: Mitochondrial diseases (MDs) are the commonest group of heritable metabolic disorders. Phenotypic diversity can make molecular diagnosis challenging, and causative genetic variants may reside in either mitochondrial or nuclear DNA. A single comprehensive genetic diagnostic test would be highly useful and transform the field. We applied whole-genome sequencing (WGS) to evaluate the variant detection rate and diagnostic capacity of this technology with a view to simplifying and improving the MD diagnostic pathway. METHODS: Adult patients presenting to a specialist MD clinic in Sydney, Australia, were recruited to the study if they satisfied clinical MD (Nijmegen) criteria. WGS was performed on blood DNA, followed by clinical genetic analysis for known pathogenic MD-associated variants and MD mimics. RESULTS: Of the 242 consecutive patients recruited, 62 participants had "definite," 108 had "probable," and 72 had "possible" MD classification by the Nijmegen criteria. Disease-causing variants were identified for 130 participants, regardless of the location of the causative genetic variants, giving an overall diagnostic rate of 53.7% (130 of 242). Identification of causative genetic variants informed precise treatment, restored reproductive confidence, and optimized clinical management of MD. DISCUSSION: Comprehensive bigenomic sequencing accurately detects causative genetic variants in affected MD patients, simplifying diagnosis, enabling early treatment, and informing the risk of genetic transmission.


Mitochondrial Diseases , Adult , Australia , Genetic Testing , Humans , Mitochondria , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Whole Genome Sequencing
8.
Neurology ; 96(13): e1770-e1782, 2021 03 30.
Article En | MEDLINE | ID: mdl-33568551

OBJECTIVE: To assess the benefits and limitations of whole genome sequencing (WGS) compared to exome sequencing (ES) or multigene panel (MGP) in the molecular diagnosis of developmental and epileptic encephalopathies (DEE). METHODS: We performed WGS of 30 comprehensively phenotyped DEE patient trios that were undiagnosed after first-tier testing, including chromosomal microarray and either research ES (n = 15) or diagnostic MGP (n = 15). RESULTS: Eight diagnoses were made in the 15 individuals who received prior ES (53%): 3 individuals had complex structural variants; 5 had ES-detectable variants, which now had additional evidence for pathogenicity. Eleven diagnoses were made in the 15 MGP-negative individuals (68%); the majority (n = 10) involved genes not included in the panel, particularly in individuals with postneonatal onset of seizures and those with more complex presentations including movement disorders, dysmorphic features, or multiorgan involvement. A total of 42% of diagnoses were autosomal recessive or X-chromosome linked. CONCLUSION: WGS was able to improve diagnostic yield over ES primarily through the detection of complex structural variants (n = 3). The higher diagnostic yield was otherwise better attributed to the power of re-analysis rather than inherent advantages of the WGS platform. Additional research is required to assist in the assessment of pathogenicity of novel noncoding and complex structural variants and further improve diagnostic yield for patients with DEE and other neurogenetic disorders.


Exome Sequencing , Spasms, Infantile/diagnosis , Whole Genome Sequencing , Child, Preschool , Chromosome Inversion/genetics , Chromosomes, Human, X/genetics , Female , Humans , Infant , MEF2 Transcription Factors/genetics , Male , Nerve Tissue Proteins/genetics , Pathology, Molecular , Rho Guanine Nucleotide Exchange Factors/genetics , Spasms, Infantile/genetics
9.
Eur J Hum Genet ; 29(5): 760-770, 2021 05.
Article En | MEDLINE | ID: mdl-33437033

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is common, with a prevalence of 1/1000 and predominantly caused by disease-causing variants in PKD1 or PKD2. Clinical diagnosis is usually by age-dependent imaging criteria, which is challenging in patients with atypical clinical features, without family history, or younger age. However, there is increasing need for definitive diagnosis of ADPKD with new treatments available. Sequencing is complicated by six pseudogenes that share 97% homology to PKD1 and by recently identified phenocopy genes. Whole-genome sequencing can definitively diagnose ADPKD, but requires validation for clinical use. We initially performed a validation study, in which 42 ADPKD patients underwent sequencing of PKD1 and PKD2 by both whole-genome and Sanger sequencing, using a blinded, cross-over method. Whole-genome sequencing identified all PKD1 and PKD2 germline pathogenic variants in the validation study (sensitivity and specificity 100%). Two mosaic variants outside pipeline thresholds were not detected. We then examined the first 144 samples referred to a clinically-accredited diagnostic laboratory for clinical whole-genome sequencing, with targeted-analysis to a polycystic kidney disease gene-panel. In this unselected, diagnostic cohort (71 males :73 females), the diagnostic rate was 70%, including a diagnostic rate of 81% in patients with typical ADPKD (98% with PKD1/PKD2 variants) and 60% in those with atypical features (56% PKD1/PKD2; 44% PKHD1/HNF1B/GANAB/ DNAJB11/PRKCSH/TSC2). Most patients with atypical disease did not have clinical features that predicted likelihood of a genetic diagnosis. These results suggest clinicians should consider diagnostic genomics as part of their assessment in polycystic kidney disease, particularly in atypical disease.


Gene Frequency , Genetic Testing/methods , Polycystic Kidney Diseases/genetics , Whole Genome Sequencing/methods , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Genetic Testing/standards , Glucosidases/genetics , HSP40 Heat-Shock Proteins/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Infant , Male , Middle Aged , Polycystic Kidney Diseases/diagnosis , Receptors, Cell Surface/genetics , Sensitivity and Specificity , TRPP Cation Channels/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Whole Genome Sequencing/standards
10.
Nat Med ; 26(11): 1742-1753, 2020 11.
Article En | MEDLINE | ID: mdl-33020650

The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.


Epigenome/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Transcriptome/genetics , Adolescent , Child , Child, Preschool , DNA Methylation/genetics , Female , Humans , Infant , Male , Mutation/genetics , Neoplasms/classification , Neoplasms/pathology , Pediatrics , Precision Medicine , Risk Factors , Exome Sequencing , Whole Genome Sequencing
11.
Genet Med ; 22(7): 1254-1261, 2020 07.
Article En | MEDLINE | ID: mdl-32313153

PURPOSE: The utility of genome sequencing (GS) in the diagnosis of suspected pediatric mitochondrial disease (MD) was investigated. METHODS: An Australian cohort of 40 pediatric patients with clinical features suggestive of MD were classified using the modified Nijmegen mitochondrial disease severity scoring into definite (17), probable (17), and possible (6) MD groups. Trio GS was performed using DNA extracted from patient and parent blood. Data were analyzed for single-nucleotide variants, indels, mitochondrial DNA variants, and structural variants. RESULTS: A definitive MD gene molecular diagnosis was made in 15 cases and a likely MD molecular diagnosis in a further five cases. Causative mitochondrial DNA (mtDNA) variants were identified in four of these cases. Three potential novel MD genes were identified. In seven cases, causative variants were identified in known disease genes with no previous evidence of causing a primary MD. Diagnostic rates were higher in patients classified as having definite MD. CONCLUSION: GS efficiently identifies variants in MD genes of both nuclear and mitochondrial origin. A likely molecular diagnosis was identified in 67% of cases and a definitive molecular diagnosis achieved in 55% of cases. This study highlights the value of GS for a phenotypically and genetically heterogeneous disorder like MD.


Genome, Mitochondrial , Mitochondrial Diseases , Australia , Child , Chromosome Mapping , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Humans , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mutation
12.
Sci Rep ; 9(1): 17052, 2019 11 19.
Article En | MEDLINE | ID: mdl-31745186

Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour's molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy.


Carcinoma, Pancreatic Ductal/genetics , Genetic Predisposition to Disease/genetics , Head and Neck Neoplasms/genetics , Pancreatic Neoplasms/genetics , Pituitary Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Circulating Tumor DNA/genetics , Computational Biology/methods , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Liquid Biopsy , Precision Medicine/methods , Sensitivity and Specificity
13.
Parkinsonism Relat Disord ; 69: 111-118, 2019 12.
Article En | MEDLINE | ID: mdl-31731261

INTRODUCTION: Dystonia is a clinically and genetically heterogeneous disorder and a genetic cause is often difficult to elucidate. This is the first study to use whole genome sequencing (WGS) to investigate dystonia in a large sample of affected individuals. METHODS: WGS was performed on 111 probands with heterogenous dystonia phenotypes. We performed analysis for coding and non-coding variants, copy number variants (CNVs), and structural variants (SVs). We assessed for an association between dystonia and 10 known dystonia risk variants. RESULTS: A genetic diagnosis was obtained for 11.7% (13/111) of individuals. We found that a genetic diagnosis was more likely in those with an earlier age at onset, younger age at testing, and a combined dystonia phenotype. We identified pathogenic/likely-pathogenic variants in ADCY5 (n = 1), ATM (n = 1), GNAL (n = 2), GLB1 (n = 1), KMT2B (n = 2), PRKN (n = 2), PRRT2 (n = 1), SGCE (n = 2), and THAP1 (n = 1). CNVs were detected in 3 individuals. We found an association between the known risk variant ARSG rs11655081 and dystonia (p = 0.003). CONCLUSION: A genetic diagnosis was found in 11.7% of individuals with dystonia. The diagnostic yield was higher in those with an earlier age of onset, younger age at testing, and a combined dystonia phenotype. WGS may be particularly relevant for dystonia given that it allows for the detection of CNVs, which accounted for 23% of the genetically diagnosed cases.


Dystonic Disorders/diagnosis , Dystonic Disorders/genetics , Whole Genome Sequencing/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , DNA Copy Number Variations , Female , Humans , Male , Middle Aged , Phenotype , Young Adult
14.
Nat Immunol ; 20(10): 1299-1310, 2019 10.
Article En | MEDLINE | ID: mdl-31534238

Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.


Poxviridae Infections/immunology , Poxviridae/physiology , Protein Domains/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Alleles , Animals , Extinction, Biological , Humans , Immunity , Inflammation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense/genetics , Phosphorylation
15.
Cerebellum ; 18(4): 781-790, 2019 Aug.
Article En | MEDLINE | ID: mdl-31104286

Inherited disorders of spasticity or ataxia exist on a spectrum with overlapping causative genes and phenotypes. We investigated the use of whole-genome sequencing (WGS) to detect a genetic cause when considering this spectrum of disorders as a single group. We recruited 18 Korean individuals with spastic paraplegia with or without cerebellar ataxia in whom common causes of hereditary cerebellar ataxia and hereditary spastic paraplegia had been excluded. We performed WGS with analysis for single nucleotide variants, small insertions and deletions, copy number variants (CNVs), structural variants (SVs) and intronic variants. Disease-relevant variants were identified in ABCD1 (n = 3), CAPN1 (n = 2), NIPA1 (n = 1) and PLA2G6 (n = 1) for 7/18 patients (38.9%). A 'reverse phenotyping' approach was used to clarify the diagnosis in individuals with PLA2G6 and ABCD1 variants. One of the ABCD1 disease-relevant variants was detected on analysis for intronic variants. No CNV or SV causes were found. The two males with ABCD1 variants were initiated on monitoring for adrenal dysfunction. This is one of only a few studies to analyse spastic-ataxias as a continuous spectrum using a single approach. The outcome was improved diagnosis of unresolved cases for which common genetic causes had been excluded. This includes the detection of ABCD1 variants which had management implications. Therefore, WGS may be particularly relevant to diagnosing spastic ataxias given the large number of genes associated with this condition and the relatively high diagnostic yield.


Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Paraplegia/diagnosis , Paraplegia/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Adolescent , Adult , Aged , Asian People , Calpain/genetics , Cerebellar Ataxia/complications , Child , Female , Gene Dosage , Genetic Variation , Group VI Phospholipases A2/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Membrane Proteins/genetics , Middle Aged , Paraplegia/complications , Pedigree , Polymorphism, Single Nucleotide , Young Adult
16.
Article En | MEDLINE | ID: mdl-30936196

Adrenocortical carcinoma is a rare malignancy with a poor prognosis and few treatment options. Molecular characterization of this cancer remains limited. We present a case of an adrenocortical carcinoma (ACC) in a 37-yr-old female, with dual lung metastases identified 1 yr following commencement of adjuvant mitotane therapy. As standard therapeutic regimens are often unsuccessful in ACC, we undertook a comprehensive genomic study into this case to identify treatment options and monitor disease progress. We performed targeted and whole-genome sequencing of germline, primary tumor, and both metastatic tumors from this patient and monitored recurrence over 2 years using liquid biopsy for ctDNA and steroid hormone measurements. Sequencing revealed the primary and metastatic tumors were hyperhaploid, with extensive loss of heterozygosity but few structural rearrangements. Loss-of-function mutations were identified in MSH2, TP53, RB1, and PTEN, resulting in tumors with mismatch repair signatures and microsatellite instability. At the cellular level, tumors were populated by mitochondria-rich oncocytes. Longitudinal ctDNA mutation and hormone profiles were unable to detect micrometastatic disease, consistent with clinical indicators of disease remission. The molecular signatures in our ACC case suggested immunotherapy in the event of disease progression; however, the patient remains free of cancer. The extensive molecular analysis presented here could be applied to other rare and/or poorly stratified cancers to identify novel or repurpose existing therapeutic options, thereby broadly improving diagnoses, treatments, and prognoses.


Adrenal Cortex Neoplasms/diagnosis , Adrenocortical Carcinoma/diagnosis , Lung Neoplasms/secondary , Whole Genome Sequencing/methods , Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , Adult , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Microsatellite Instability , Mutation , Prognosis
18.
Am J Hum Genet ; 104(3): 542-552, 2019 03 07.
Article En | MEDLINE | ID: mdl-30827498

Polyglutamine expansions in the transcriptional co-repressor Atrophin-1, encoded by ATN1, cause the neurodegenerative condition dentatorubral-pallidoluysian atrophy (DRPLA) via a proposed novel toxic gain of function. We present detailed phenotypic information on eight unrelated individuals who have de novo missense and insertion variants within a conserved 16-amino-acid "HX repeat" motif of ATN1. Each of the affected individuals has severe cognitive impairment and hypotonia, a recognizable facial gestalt, and variable congenital anomalies. However, they lack the progressive symptoms typical of DRPLA neurodegeneration. To distinguish this subset of affected individuals from the DRPLA diagnosis, we suggest using the term CHEDDA (congenital hypotonia, epilepsy, developmental delay, digit abnormalities) to classify the condition. CHEDDA-related variants alter the particular structural features of the HX repeat motif, suggesting that CHEDDA results from perturbation of the structural and functional integrity of the HX repeat. We found several non-homologous human genes containing similar motifs of eight to 10 HX repeat sequences, including RERE, where disruptive variants in this motif have also been linked to a separate condition that causes neurocognitive and congenital anomalies. These findings suggest that perturbation of the HX motif might explain other Mendelian human conditions.


Amino Acid Motifs/genetics , Genetic Variation , Nerve Tissue Proteins/genetics , Neurocognitive Disorders/etiology , Repetitive Sequences, Nucleic Acid , Child , Child, Preschool , Female , Humans , Infant , Male , Neurocognitive Disorders/classification , Neurocognitive Disorders/pathology , Phenotype , Prognosis , Syndrome
19.
J Invest Dermatol ; 139(7): 1449-1458.e1, 2019 07.
Article En | MEDLINE | ID: mdl-30684551

Cutaneous squamous cell carcinoma from the head and neck typically metastasize to the lymph nodes of the neck and parotid glands. When a primary is not identified, they are difficult to distinguish from metastases of mucosal origin and primary salivary gland squamous cell carcinoma. UV radiation causes a mutation pattern that predominantly features cytosine to thymine transitions at dipyrimidine sites and has been associated with cutaneous squamous cell carcinoma. In this study, we used whole genome sequencing data from 15 cutaneous squamous cell carcinoma metastases and show that a UV mutation signature is pervasive across the cohort and distinct from mucosal squamous cell carcinoma. The mutational burden was exceptionally high and concentrated in some regions of the genome, especially insulator elements (mean 162 mutations/megabase). We therefore evaluated the likely impact of UV-induced mutations on the dipyrimidine-rich binding site of the main human insulator protein, CCCTC-binding factor, and the possible implications on CCCTC-binding factor function and the spatial organization of the genome. Our findings suggest that mutation signature analysis may be useful in determining the origin of metastases in the neck and the parotid gland. Furthermore, UV-induced DNA damage to insulator binding sites may play a role in the carcinogenesis and progression of cutaneous squamous cell carcinoma.


CCCTC-Binding Factor/genetics , Carcinoma, Squamous Cell/genetics , Lymphatic Metastasis/genetics , Mutation/genetics , Parotid Neoplasms/genetics , Skin Neoplasms/genetics , Adult , Aged , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/secondary , Cohort Studies , DNA Mutational Analysis , Female , Humans , Lymphatic Metastasis/diagnosis , Male , Middle Aged , Neoplasm Metastasis , Parotid Neoplasms/diagnosis , Parotid Neoplasms/secondary , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Ultraviolet Rays/adverse effects , Whole Genome Sequencing
20.
Oncogene ; 38(10): 1661-1675, 2019 03.
Article En | MEDLINE | ID: mdl-30348992

Our understanding of genomic heterogeneity in lung cancer is largely based on the analysis of early-stage surgical specimens. Here we used endoscopic sampling of paired primary and intrathoracic metastatic tumors from 11 lung cancer patients to map genomic heterogeneity inoperable lung cancer with deep whole-genome sequencing. Intra-patient heterogeneity in driver or targetable mutations was predominantly in the form of copy number gain. Private mutation signatures, including patterns consistent with defects in homologous recombination, were highly variable both within and between patients. Irrespective of histotype, we observed a smaller than expected number of private mutations, suggesting that ancestral clones accumulated large mutation burdens immediately prior to metastasis. Single-region whole-genome sequencing of from 20 patients showed that tumors in ever-smokers with the strongest tobacco signatures were associated with germline variants in genes implicated in the repair of cigarette-induced DNA damage. Our results suggest that lung cancer precursors in ever-smokers accumulate large numbers of mutations prior to the formation of frank malignancy followed by rapid metastatic spread. In advanced lung cancer, germline variants in DNA repair genes may interact with the airway environment to influence the pattern of founder mutations, whereas similar interactions with the tumor microenvironment may play a role in the acquisition of mutations following metastasis.


Genetic Heterogeneity , Lung Neoplasms/genetics , Thoracic Neoplasms/genetics , Thoracic Neoplasms/secondary , Whole Genome Sequencing/methods , Adenocarcinoma of Lung/genetics , Aged , Aged, 80 and over , Carcinoma, Squamous Cell/classification , Carcinoma, Squamous Cell/genetics , DNA Copy Number Variations , Female , Founder Effect , Gene-Environment Interaction , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Small Cell Lung Carcinoma/genetics , Tumor Microenvironment
...