Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 88
1.
Theranostics ; 12(11): 4949-4964, 2022.
Article En | MEDLINE | ID: mdl-35836805

Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.


Precision Medicine , Transducers , Microbubbles , Phantoms, Imaging , Ultrasonography/methods
2.
Bioengineering (Basel) ; 9(5)2022 Apr 27.
Article En | MEDLINE | ID: mdl-35621468

Research on the capability of non-viral gene delivery systems to induce tissue regeneration is a continued effort as the current use of viral vectors can present with significant limitations. Despite initially showing lower gene transfection and gene expression efficiencies, non-viral delivery methods continue to be optimized to match that of their viral counterparts. Ultrasound-mediated gene transfer, referred to as sonoporation, occurs by the induction of transient membrane permeabilization and has been found to significantly increase the uptake and expression of DNA in cells across many organ systems. In addition, it offers a more favorable safety profile compared to other non-viral delivery methods. Studies have shown that microbubble-enhanced sonoporation can elicit significant tissue regeneration in both ectopic and disease models, including bone and vascular tissue regeneration. Despite this, no clinical trials on the use of sonoporation for tissue regeneration have been conducted, although current clinical trials using sonoporation for other indications suggest that the method is safe for use in the clinical setting. In this review, we describe the pre-clinical studies conducted thus far on the use of sonoporation for tissue regeneration. Further, the various techniques used to increase the effectiveness and duration of sonoporation-induced gene transfer, as well as the obstacles that may be currently hindering clinical translation, are explored.

3.
Cells ; 11(5)2022 03 05.
Article En | MEDLINE | ID: mdl-35269519

The use of a bone allograft presents a promising approach for healing nonunion fractures. We have previously reported that parathyroid hormone (PTH) therapy induced allograft integration while modulating angiogenesis at the allograft proximity. Here, we hypothesize that PTH-induced vascular modulation and the osteogenic effect of PTH are both dependent on endothelial PTH receptor-1 (PTHR1) signaling. To evaluate our hypothesis, we used multiple transgenic mouse lines, and their wild-type counterparts as a control. In addition to endothelial-specific PTHR1 knock-out mice, we used mice in which PTHR1 was engineered to be constitutively active in collagen-1α+ osteoblasts, to assess the effect of PTH signaling activation exclusively in osteoprogenitors. To characterize resident cell recruitment and osteogenic activity, mice in which the Luciferase reporter gene is expressed under the Osteocalcin promoter (Oc-Luc) were used. Mice were implanted with calvarial allografts and treated with either PTH or PBS. A micro-computed tomography-based structural analysis indicated that the induction of bone formation by PTH, as observed in wild-type animals, was not maintained when PTHR1 was removed from endothelial cells. Furthermore, the induction of PTH signaling exclusively in osteoblasts resulted in significantly less bone formation compared to systemic PTH treatment, and significantly less osteogenic activity was measured by bioluminescence imaging of the Oc-Luc mice. Deletion of the endothelial PTHR1 significantly decreased the PTH-induced formation of narrow blood vessels, formerly demonstrated in wild-type mice. However, the exclusive activation of PTH signaling in osteoblasts was sufficient to re-establish the observed PTH effect. Collectively, our results show that endothelial PTHR1 signaling plays a key role in PTH-induced osteogenesis and has implications in angiogenesis.


Endothelial Cells , Parathyroid Hormone , Animals , Bone Regeneration , Mice , Parathyroid Hormone/pharmacology , Receptor, Parathyroid Hormone, Type 1/genetics , X-Ray Microtomography
4.
Sci Rep ; 11(1): 19195, 2021 09 28.
Article En | MEDLINE | ID: mdl-34584114

Low back pain (LBP) is often a result of a degenerative process in the intervertebral disc. The precise origin of discogenic pain is diagnosed by the invasive procedure of provocative discography (PD). Previously, we developed quantitative chemical exchange saturation transfer (qCEST) magnetic resonance imaging (MRI) to detect pH as a biomarker for discogenic pain. Based on these findings we initiated a clinical study with the goal to evaluate the correlation between qCEST values and PD results in LBP patients. Twenty five volunteers with chronic low back pain were subjected to T2-weighted (T2w) and qCEST MRI scans followed by PD. A total of 72 discs were analyzed. The average qCEST signal value of painful discs was significantly higher than non-painful discs (p = 0.012). The ratio between qCEST and normalized T2w was found to be significantly higher in painful discs compared to non-painful discs (p = 0.0022). A receiver operating characteristics (ROC) analysis indicated that qCEST/T2w ratio could be used to differentiate between painful and non-painful discs with 78% sensitivity and 81% specificity. The results of the study suggest that qCEST could be used for the diagnosis of discogenic pain, in conjunction with the commonly used T2w scan.


Chronic Pain/diagnosis , Intervertebral Disc Degeneration/diagnosis , Intervertebral Disc/diagnostic imaging , Low Back Pain/diagnosis , Magnetic Resonance Imaging/methods , Adult , Chronic Pain/etiology , Diagnosis, Differential , Feasibility Studies , Female , Humans , Intervertebral Disc/chemistry , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/complications , Low Back Pain/etiology , Male
5.
Cells ; 10(9)2021 08 29.
Article En | MEDLINE | ID: mdl-34571890

Intervertebral disc degeneration (IVDD) occurs as a result of an imbalance of the anabolic and catabolic processes in the intervertebral disc, leading to an alteration in the composition of the extracellular matrix (ECM), loss of nucleus pulposus (NP) cells, excessive oxidative stress and inflammation. Degeneration of the IVD occurs naturally with age, but mechanical trauma, lifestyle factors and certain genetic abnormalities can increase the likelihood of symptomatic disease progression. IVDD, often referred to as degenerative disc disease (DDD), poses an increasingly substantial financial burden due to the aging population and increasing incidence of obesity in the United States. Current treatments for IVDD include pharmacological and surgical interventions, but these lack the ability to stop the progression of disease and restore the functionality of the IVD. Biological therapies have been evaluated but show varying degrees of efficacy in reversing disc degeneration long-term. Stem cell-based therapies have shown promising results in the regeneration of the IVD, but face both biological and ethical limitations. Exosomes play an important role in intercellular communication, and stem cell-derived exosomes have been shown to maintain the therapeutic benefit of their origin cells without the associated risks. This review highlights the current state of research on the use of stem-cell derived exosomes in the treatment of IVDD.


Exosomes/transplantation , Intervertebral Disc Degeneration/surgery , Intervertebral Disc/physiopathology , Regeneration , Stem Cell Transplantation , Animals , Exosomes/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/physiopathology , Recovery of Function
6.
J Tissue Eng Regen Med ; 14(8): 1037-1049, 2020 08.
Article En | MEDLINE | ID: mdl-32483878

Massive craniofacial bone loss poses a clinical challenge to maxillofacial surgeons. Structural bone allografts are readily available at tissue banks but are rarely used due to a high failure rate. Previous studies showed that intermittent administration of recombinant parathyroid hormone (rPTH) enhanced integration of allografts in a murine model of calvarial bone defect. To evaluate its translational potential, the hypothesis that rPTH would enhance healing of a mandibular allograft in a clinically relevant large animal model of mandibulectomy was tested. Porcine bone allografts were implanted into a 5-cm-long continuous mandible bone defect in six adult Yucatan minipigs, which were randomized to daily intramuscular injections of rPTH (1.75 µg/kg) and placebo (n = 3). Blood tests were performed on Day 56 preoperation, Day 0 and on Day 56 postoperation. Eight weeks after the surgery, bone healing was analyzed using high-resolution X-ray imaging (Faxitron and micro computed tomography [CT]) and three-point bending biomechanical testing. The results showed a significant 2.6-fold rPTH-induced increase in bone formation (p = 0.02). Biomechanically, the yield failure properties of the healed mandibles were significantly higher in the rPTH group (yield load: p < 0.05; energy to yield: p < 0.01), and the post-yield displacement and energy were higher in the placebo group (p < 0.05), suggesting increased mineralized integration of the allograft in the rPTH group. In contrast to similar rPTH therapy studies in dogs, no signs of hypercalcemia, hyperphosphatemia, or inflammation were detected. Taken together, we provide initial evidence that rPTH treatment enhances mandibular allograft healing in a clinically relevant large animal model.


Bone Transplantation , Mandible/transplantation , Mandibular Injuries/therapy , Mandibular Osteotomy , Osteogenesis/drug effects , Teriparatide/pharmacology , Allografts , Animals , Female , Swine , Swine, Miniature
7.
Proc Natl Acad Sci U S A ; 117(23): 12674-12685, 2020 06 09.
Article En | MEDLINE | ID: mdl-32430322

Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-ß, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-ß). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-ß plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.


Immunotherapy/methods , Interferon-beta/genetics , Neoplasms, Experimental/therapy , T-Lymphocytes/immunology , Transfection/methods , Ultrasonic Waves , Animals , Cell Line, Tumor , Cell Membrane/radiation effects , Cell Movement , Humans , Interferon-beta/metabolism , Mice , Microbubbles/therapeutic use , T-Lymphocytes/physiology
8.
Bone ; 137: 115449, 2020 08.
Article En | MEDLINE | ID: mdl-32447073

Musculoskeletal disorders are common and can be associated with significant morbidity and reduced quality of life. Current treatments for major bone loss or cartilage defects are insufficient. Bone morphogenetic proteins (BMPs) are key players in the recruitment and regeneration of damaged musculoskeletal tissues, and attempts have been made to introduce the protein to fracture sites with limited success. In the last 20 years we have seen a substantial progress in the development of various BMP gene delivery platforms for several conditions. In this review we cover the progress made using several techniques for BMP gene delivery for bone as well as cartilage regeneration, with focus on recent advances in the field of skeletal tissue engineering. Some methods have shown success in large animal models, and with the global trend of introducing gene therapies into the clinical setting, it seems that the day in which BMP gene therapy will be viable for clinical use is near.


Bone Morphogenetic Proteins , Quality of Life , Animals , Bone Morphogenetic Protein 2 , Bone Morphogenetic Proteins/genetics , Bone Regeneration/genetics , Cartilage , Genetic Therapy , Tissue Engineering
9.
Theranostics ; 9(25): 7506-7524, 2019.
Article En | MEDLINE | ID: mdl-31695783

Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.


Cell Differentiation/physiology , Induced Pluripotent Stem Cells/physiology , Intervertebral Disc Degeneration/pathology , Notochord/physiology , Animals , Biomarkers/metabolism , Cell Line , Cells, Cultured , Coculture Techniques/methods , Culture Media, Conditioned/metabolism , Female , Fetal Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Intervertebral Disc Degeneration/metabolism , Kruppel-Like Factor 4 , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Notochord/metabolism , Swine , Swine, Miniature , T-Box Domain Proteins/metabolism
10.
Am J Sports Med ; 47(11): 2737-2744, 2019 09.
Article En | MEDLINE | ID: mdl-31336056

BACKGROUND: Although tendon injuries and repairs are common, treatment of these injuries has limitations. The application of mesenchymal progenitor cells (MPCs) is increasingly used to optimize the biological process of tendon repair healing. However, clinically relevant technologies that effectively assess the localization of exogenous MPCs in vivo are lacking. HYPOTHESIS: Exogenous MPCs labeled with superparamagnetic iron oxide (SPIO) particles would allow monitoring of the localization and retention of cells within the site of implantation via magnetic resonance imaging (MRI) without negatively affecting cell survival or differentiation. STUDY DESIGN: Descriptive laboratory study. METHODS: Genetically modified C3H10T1/2 MPCs engineered to express luciferase (Luc+) reporter gene were implanted into surgically created Achilles tendon defects of 10 athymic nude rats (Hsd:RH-Foxn1rnu). Of these animals, 5 animals received Luc+ C3H10T1/2 MPCs colabeled with SPIO nanoparticles (+SPIO). These 2 groups of animals then underwent optical imaging with quantification of bioluminescence and MRI at 7, 14, and 28 days after surgery. Statistical analysis was conducted by use of 2-way analysis of variance. At 28 days after surgery, animals were euthanized and the treated limbs underwent histologic analysis. RESULTS: Optical imaging demonstrated that the implanted cells not only survived but also proliferated in vivo, and these cells remained viable for at least 4 weeks after implantation. In addition, SPIO labeling did not appear to affect MPC survival or proliferation, as assessed by quantitative bioluminescence imaging (P > .05, n = 5). MRI demonstrated that SPIO labeling was an effective method to monitor cell localization, retention, and viability for at least 4 weeks after implantation. Histologic and immunofluorescence analyses of the repaired tendon defect sites demonstrated tenocyte-like labeled cells, suggesting that cell differentiation was not affected by labeling the cells with the SPIO nanoparticles. CONCLUSION: MRI of exogenous MPCs labeled with SPIO particles allows for effective in vivo assessments of cell localization and retention in the setting of tendon regeneration for at least 4 weeks after implantation. This SPIO labeling does not appear to impair cell survival, transgene expression, or differentiation. CLINICAL RELEVANCE: SPIO labeling of MPCs appears to be safe for in vivo assessments of MPCs in tendon regeneration therapies and may be used for future clinical investigations of musculoskeletal regenerative medicine.


Magnetic Resonance Imaging/methods , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Regeneration/physiology , Tendon Injuries/physiopathology , Tendons/physiology , Animals , Cell Differentiation , Cell Survival , Ferric Compounds , Magnetite Nanoparticles , Mice , Optical Imaging , Rats , Rats, Nude , Tendon Injuries/diagnostic imaging , Tendons/diagnostic imaging
11.
Nat Protoc ; 14(4): 1015-1026, 2019 04.
Article En | MEDLINE | ID: mdl-30804568

Ultrasound-mediated gene delivery (sonoporation) is a minimally invasive, nonviral and clinically translatable method of gene therapy. This method offers a favorable safety profile over that of viral vectors and is less invasive as compared with other physical gene delivery approaches (e.g., electroporation). We have previously used sonoporation to overexpress transgenes in different skeletal tissues in order to induce tissue regeneration. Here, we provide a protocol that could easily be adapted to address various other targets of tissue regeneration or additional applications, such as cancer and neurodegenerative diseases. This protocol describes how to prepare, conduct and optimize ultrasound-mediated gene delivery in both a murine and a porcine animal model. The protocol includes the preparation of a microbubble-DNA mix and in vivo sonoporation under ultrasound imaging. Ultrasound-mediated gene delivery can be accomplished within 10 min. After DNA delivery, animals can be followed to monitor gene expression, protein secretion and other transgene-specific outcomes, including tissue regeneration. This procedure can be accomplished by a competent graduate student or technician with prior experience in ultrasound imaging or in performing in vivo procedures.


DNA/genetics , Gene Transfer Techniques/instrumentation , Neoplasms/therapy , Neurodegenerative Diseases/therapy , Ultrasonic Therapy/methods , Ultrasonography/methods , Animals , DNA/metabolism , Disease Models, Animal , Genetic Therapy/methods , Humans , Mice , Microbubbles , Muscle, Skeletal/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Plasmids/chemistry , Plasmids/metabolism , Swine , Swine, Miniature , Ultrasonic Waves
12.
Microfluid Nanofluidics ; 23(8)2019 Aug.
Article En | MEDLINE | ID: mdl-32296299

Human organoids and organ-on-chip systems to predict human responses to new therapies and for the understanding of disease mechanisms are being more commonly used in translational research. We have developed a bone-chip system to study osteogenic differentiation in vitro, coupled with optical imaging approach which provides the opportunity of monitoring cell survival, proliferation and differentiation in vitro without the need to terminate the culture. We used the mesenchymal stem cell (MSC) line over-expressing bone morphogenetic protein-2 (BMP-2), under Tet-Off system, and luciferase reporter gene under constitutive promoter. Cells were seeded on chips and supplemented with osteogenic medium. Flow of media was started 24 h later, while static cultures were performed using media reservoirs. Cells grown on the bone-chips under constant flow of media showed enhanced survival/proliferation, comparing to the cells grown in static conditions; luciferase reporter gene expression and activity, reflecting the cell survival and proliferation, was quantified using bioluminescence imaging and a significant advantage to the flow system was observed. In addition, the flow had positive effect on osteogenic differentiation, when compared with static cultures. Quantitative fluorescent imaging, performed using the osteogenic extra-cellular matrix-targeted probes, showed higher osteogenic differentiation of the cells under the flow conditions. Gene expression analysis of osteogenic markers confirmed the osteogenic differentiation of the MSC-BMP2 cells. Immunofluorescent staining performed against the Osteocalcin, Col1, and BSP markers illustrated robust osteogenic differentiation in the flow culture and lessened differentiation in the static culture. To sum, the bone-chip allows monitoring cell survival, proliferation, and osteogenic differentiation using optical imaging.

13.
Sci Rep ; 8(1): 17363, 2018 11 26.
Article En | MEDLINE | ID: mdl-30478330

Intervertebral disc (IVD) degeneration is a leading cause of chronic low back pain that affects millions of people every year. Yet identification of the specific IVD causing this pain is based on qualitative visual interpretation rather than objective findings. One possible approach to diagnosing pain-associated IVD could be to identify acidic IVDs, as decreased pH within an IVD has been postulated to mediate discogenic pain. We hypothesized that quantitative chemical exchange saturation transfer (qCEST) MRI could detect pH changes in IVDs, and thence be used to diagnose pathologically painful IVDs objectively and noninvasively. To test this hypothesis, a surgical model of IVD degeneration in Yucatan minipigs was used. Direct measurement of pH inside the degenerated IVDs revealed a significant drop in pH after degeneration, which correlated with a significant increase in the qCEST signal. Gene analysis of harvested degenerated IVDs revealed significant upregulation of pain-, nerve- and inflammatory-related markers after IVD degeneration. A strong positive correlation was observed between the expression of pain markers and the increase in the qCEST signal. Collectively, these findings suggest that this approach might be used to identify which IVD is causing low back pain, thereby providing valuable guidance for pain and surgical management.


Biomarkers/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc/metabolism , Intervertebral Disc/physiopathology , Low Back Pain/metabolism , Low Back Pain/physiopathology , Animals , Disease Models, Animal , Female , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Swine , Swine, Miniature
14.
Curr Osteoporos Rep ; 16(4): 504-511, 2018 08.
Article En | MEDLINE | ID: mdl-29909597

PURPOSE OF REVIEW: The purpose of this review is to discuss the recent advances in gene therapy as a treatment for bone regeneration. While most fractures heal spontaneously, patients who present with fracture nonunion suffer from prolonged pain, disability, and often require additional operations to regain musculoskeletal function. RECENT FINDINGS: In the last few years, BMP gene delivery by means of electroporation and sonoporation resulted in repair of nonunion bone defects in mice, rats, and minipigs. Ex vivo transfection of porcine mesenchymal stem cells (MSCs) resulted in bone regeneration following implantation in vertebral defects of minipigs. Sustained release of VEGF gene from a collagen-hydroxyapatite scaffold to the mandible of a human patient was shown to be safe and osteoinductive. In conclusion, gene therapy methods for bone regeneration are systematically becoming more efficient and show proof-of-concept in clinically relevant animal models. Yet, on the pathway to clinical use, more investigation is needed to determine the safety aspects of the various techniques in terms of biodistribution, toxicity, and tumorigenicity.


Bone Morphogenetic Proteins/genetics , Bone Regeneration/genetics , Fracture Healing/genetics , Fractures, Ununited/therapy , Genetic Therapy/methods , Vascular Endothelial Growth Factor A/genetics , Animals , Collagen , Durapatite , Electroporation , Humans , Mesenchymal Stem Cell Transplantation , Tissue Scaffolds , Transfection
15.
Mol Ther ; 26(7): 1746-1755, 2018 07 05.
Article En | MEDLINE | ID: mdl-29784586

Ligament injuries occur frequently, substantially hindering routine daily activities and sports participation in patients. Surgical reconstruction using autogenous or allogeneic tissues is the gold standard treatment for ligament injuries. Although surgeons routinely perform ligament reconstructions, the integrity of these reconstructions largely depends on adequate biological healing of the interface between the ligament graft and the bone. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would lead to significantly improved ligament graft integration. To test this hypothesis, an anterior cruciate ligament reconstruction procedure was performed in Yucatan mini-pigs. A collagen scaffold was implanted in the reconstruction sites to facilitate recruitment of endogenous mesenchymal stem cells. Ultrasound-mediated reporter gene delivery successfully transfected 40% of cells recruited to the reconstruction sites. When BMP-6 encoding DNA was delivered, BMP-6 expression in the reconstruction sites was significantly enhanced. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to significantly enhanced osteointegration in all animals 8 weeks after surgery. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively improve ligament reconstruction in large animals, thereby addressing a major unmet orthopedic need and offering new possibilities for translation to the clinical setting.


Allografts/cytology , Anterior Cruciate Ligament Reconstruction/methods , Ligaments/cytology , Tendons/cytology , Allografts/metabolism , Animals , Bone Morphogenetic Protein 6/metabolism , Collagen/metabolism , Gene Transfer Techniques , Ligaments/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Swine , Swine, Miniature , Tendons/metabolism , Transplantation, Homologous/methods , Ultrasonography/methods , X-Ray Microtomography/methods
16.
J Vis Exp ; (127)2017 09 28.
Article En | MEDLINE | ID: mdl-28994771

Osteoporosis-related vertebral compression fractures (OVCFs) are a common and clinically unmet need with increasing prevalence as the world population ages. Animal OVCF models are essential to the preclinical development of translational tissue engineering strategies. While a number of models currently exist, this protocol describes an optimized method for inducing multiple highly reproducible vertebral defects in a single nude rat. A novel longitudinal semiautomated microcomputed tomography (µCT)-based quantitative structural analysis of the vertebral defects is also detailed. Briefly, rats were imaged at multiple time points post-op. The day 1 scan was reoriented to a standard position, and a standard volume of interest was defined. Subsequent µCT scans of each rat were automatically registered to the day 1 scan so the same volume of interest was then analyzed to assess for new bone formation. This versatile approach can be adapted to a variety of other models where longitudinal imaging-based analysis could benefit from precise 3D semiautomated alignment. Taken together, this protocol describes a readily quantifiable and easily reproducible system for osteoporosis and bone research. The suggested protocol takes 4 months to induce osteoporosis in nude ovariectomized rats and between 2.7 and 4 h to generate, image, and analyze two vertebral defects, depending on tissue size and equipment.


Osteoporosis/diagnostic imaging , Osteoporotic Fractures/diagnostic imaging , Spinal Fractures/diagnostic imaging , X-Ray Microtomography/methods , Animals , Disease Models, Animal , Female , Humans , Rats , Rats, Nude
17.
Sci Transl Med ; 9(390)2017 05 17.
Article En | MEDLINE | ID: mdl-28515335

More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 (BMP-6) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation.


Mesenchymal Stem Cells/metabolism , Stem Cells/metabolism , Tissue Engineering/methods , Animals , Bone Morphogenetic Protein 6/metabolism , Bone Regeneration/physiology , Mesenchymal Stem Cells/cytology , Microbubbles , Stem Cells/cytology , Swine , Swine, Miniature
18.
Stem Cell Res Ther ; 8(1): 51, 2017 03 09.
Article En | MEDLINE | ID: mdl-28279202

BACKGROUND: A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. METHODS: The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals' fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 µg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 106 hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (µCT), followed by histological analysis. RESULTS: Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. µCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4th week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the µCT scans, biomechanical analysis using the micro-finite element method demonstrated that the healed ribs were stiffer than intact ribs in torsion, compression, and bending simulations, as expected when examining bone callus composed of woven bone. CONCLUSIONS: Administration of both hMSCs and PTH worked synergistically in rib fracture healing, suggesting this approach may pave the way to treat multiple rib fractures as well as additional fractures in various anatomical sites.


Bone Regeneration , Mesenchymal Stem Cell Transplantation , Parathyroid Hormone/administration & dosage , Rib Fractures/therapy , Animals , Disease Models, Animal , Fracture Healing/drug effects , Humans , Mesenchymal Stem Cells/physiology , Osteocalcin/biosynthesis , Rats , Rib Fractures/physiopathology , Sialoglycoproteins/biosynthesis , X-Ray Microtomography
19.
Bone ; 97: 192-200, 2017 04.
Article En | MEDLINE | ID: mdl-28119180

Nearly all bone fractures in humans can deteriorate into a non-union fracture, often due to formation of fibrotic tissue. Cranial allogeneic bone grafts present a striking example: although seemingly attractive for craniofacial reconstructions, they often fail due to fibrosis at the host-graft junction, which physically prevents the desired bridging of bone between the host and graft and revitalization of the latter. In the present study we show that intermittent treatment with recombinant parathyroid hormone-analogue (teriparatide) modulates neovascularization feeding in the graft surroundings, consequently reducing fibrosis and scar tissue formation and facilitates osteogenesis. Longitudinal inspection of the vascular tree feeding the allograft has revealed that teriparatide induces formation of small-diameter vessels in the 1st week after surgery; by the 2nd week, abundant formation of small-diameter blood vessels was detected in untreated control animals, but far less in teriparatide-treated mice, although in total, more blood capillaries were detected in the animals that were given teriparatide. By that time point we observed expression of the profibrogenic mediator TGF-ß in untreated animals, but negligible expression in the teriparatide-treated mice. To evaluate the formation of scar tissue, we utilized a magnetization transfer contrast MRI protocol to differentiate osteoid tissue from scar tissue, based on the characterization of collagen fibers. Using this method we found that significantly more bone matrix was formed in animals given teriparatide than in control animals. Altogether, our findings show how teriparatide diminishes scarring, ultimately leading to superior bone graft integration.


Allografts/drug effects , Bone Transplantation/adverse effects , Cicatrix/drug therapy , Cicatrix/etiology , Neovascularization, Physiologic/drug effects , Skull/pathology , Teriparatide/therapeutic use , Animals , Blood Vessels/drug effects , Blood Vessels/growth & development , Calcification, Physiologic/drug effects , Female , Fibrosis , Magnetic Resonance Imaging , Mice, Inbred C57BL , Teriparatide/pharmacology
20.
J Tissue Eng Regen Med ; 11(5): 1553-1561, 2017 05.
Article En | MEDLINE | ID: mdl-26193866

Disorders of the temporomandibular joint (TMJ) complex affect 6-12% of the population; the joint's disc is usually involved. Tissue engineering and regenerative medicine may constitute a promising therapeutic approach, with resident stromal progenitor cells a key factor in the process. We hypothesized that the TMJ disc (TMJD) contains multipotent stromal progenitors that may play an important role in regeneration of the disc. TMJD cells were cultured and evaluated for growth kinetics and colony-forming units (CFUs). Single cell-derived clones were isolated and induced to differentiate toward the osteogenic, adipogenic and chondrogenic lineages by culturing in various induction media. Flow cytometry was used to identify multipotent stromal cell surface markers in additional cell samples, and reverse transcription-polymerase chain reaction (RT-PCR) was used to determine gene expression patterns within isolated cells. High numbers of CFUs were observed, indicating cell self-renewal. Biochemical assays showed significantly higher alkaline phosphatase (ALP) activity, lipid droplet concentration and glycosaminoglycan levels in cells cultured in osteogenic, adipogenic and chondrogenic induction medium, respectively. Approximately 1% of the total cell population demonstrated the capability to differentiate into all three mesenchymal lineages. Chondrogenic gene levels within TMJD-derived cells were significantly reduced in passaged culture. Our results support the hypothesis that multipotent stromal progenitor cells populate the TMJD and possess proliferation and differentiation capabilities. These cells may contribute to the regeneration potential of dysfunctional tissue and become the primary component in future attempts at tissue engineering or regeneration of this complex. Copyright © 2015 John Wiley & Sons, Ltd.


Cell Separation/methods , Mesenchymal Stem Cells/cytology , Temporomandibular Joint Disc/cytology , Animals , Mesenchymal Stem Cells/metabolism , Swine , Swine, Miniature , Temporomandibular Joint Disc/metabolism
...