Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 901: 165943, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37541520

RESUMEN

The purification performance of aquaculture wastewater and the risk of antibiotic resistance genes (ARGs) dissemination in wetlands dominated by macrophytes remain unclear. Here, the purification effects of different macrophytes and biofilm systems on real aquaculture wastewater were investigated, as well as the distribution and abundance of ARGs. Compared to the submerged macrophytes, artificial macrophytes exhibited higher removal rates of TOC (58.80 ± 5.04 %), TN (74.50 ± 2.50 %), and TP (77.33 ± 11.66 %), and achieved approximately 79.92 % removal of accumulated trace antibiotics in the surrounding water. Additionally, the biofilm microbial communities on the surface of artificial macrophytes exhibited higher microbial diversity with fewer antibiotic-resistant bacteria (ARB) enrichment from the surrounding water. The absolute abundance of ARGs (sul1, sul2, and intI1) in the mature biofilm to be one to two orders of magnitude higher than that in the water. Although biofilms could decrease ARGs in the surrounding water by enriching ARB, the intricate network structure of biofilms further facilitated the proliferation of ARB and the dissemination of ARGs in water. Network analysis suggested that Proteobacteria and Firmicutes phyla were dominant and potential carriers of ARGs, contributing 69.00 % and 16.70 %, respectively. Our findings highlight that macrophytes and biofilm systems have great performance on aquaculture wastewater purification, but with high risk of ARGs.


Asunto(s)
Genes Bacterianos , Aguas Residuales , Bacterias/genética , Antagonistas de Receptores de Angiotensina/farmacología , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Farmacorresistencia Microbiana/genética , Biopelículas , Acuicultura , Agua
2.
J Environ Manage ; 343: 118246, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245312

RESUMEN

Algal-bacterial symbiotic system is a biological purification system that combines sewage treatment with resource utilization and has the dual effects of carbon sequestration and pollution reduction. In this study, an immobilized algal-bacterial biofilm system was constructed for the treatment of natural sewage. Effects of exposure to microplastics (MPs) with different particle diameters (0.065 µm, 0.5 µm and 5 µm) were determined in terms of algal biomass recovery efficiency, the composition of extracellular polymeric substances (EPS) and morphologic characteristics. The impacts of MPs on the bacterial diversity and community structure of biofilms were also examined. The metagenomic analysis of key microorganisms and related metabolism pathways involved in system was further investigated. Results showed that following exposure to 5 µm MP, a maximum algal recovery efficiency of 80% was achieved, with a minimum PSII primary light energy conversion efficiency (Fv/Fm ratio) of 0.513. Furthermore, 5 µm MP caused the highest level of damage to the algal-bacterial biofilm, enhancing the secretion of protein-rich EPS. The biofilm morphology became rough and loose following exposure to 0.5 µm and 5 µm MP. Community diversity and richness were significantly high in biofilms exposed to 5 µm MP. Proteobacteria (15.3-24.1%), Firmicutes (5.0-7.8%) and Actinobacteria (4.2-4.9%) were dominant in all groups, with exposure to 5 µm MP resulting in the highest relative abundance for these species. The addition of MPs promoted the related metabolic functions while inhibited the degradation of harmful substances by algal-bacterial biofilms. The findings have environmental significance for the practical application of algal-bacterial biofilms for sewage treatment, providing novel insights into the potential effects of MPs on immobilized algal-bacterial biofilm systems.


Asunto(s)
Microbiota , Microplásticos , Bacterias/metabolismo , Biopelículas , Microplásticos/metabolismo , Microplásticos/farmacología , Plásticos , Aguas del Alcantarillado
3.
J Environ Manage ; 322: 116124, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36063697

RESUMEN

Ecological floating beds could enable roots to become suspended and this allowed submerged roots to harbour various types of microbes. But, there was a lack of systematic research on microbial community structure changes and the influencing mechanisms. In this study, the ecological floating beds were constructed using selected plants [Cyperus involucratus Rottboll (Cyp), Thalia dealbata Fraser (Tha) and Iris tectorum Maxim (Iri)] that was compared with a control group [static water (S)]. The results showed that the highest abundance and diversity of root microbial communities were found in autumn, with the dominant taxa being Proteobacteria, Actinobacteriota, Cyanobacteria, Chloroflexi, Firmicutes, Bacteroidota, and Acidobacteriota. The microbial communities of Tha and Cyp groups greatly overlapped, while the Iri and control groups exhibited distinctly diverse communities. The root microbial populations of the same plant also reflected a large change in different seasons. Conversely, photosynthetic autotrophs and specialized anaerobes were more inclined to thrive at higher temperatures and lower DO concentrations and then they gradually became the dominant species. Microbial co-occurrences of the Tha and control groups were complex and showed both cooperation and competition. In addition, TOC was an important environmental factor that shaped the microbial community structures and DO changed the microbial community by affecting the abundance of aerobic and anaerobic bacteria. Microorganisms showed potential for degradation and metabolism of non-food substances with low/no corresponding metabolic pathways.


Asunto(s)
Cianobacterias , Microbiota , Raíces de Plantas/microbiología , Plantas , Rizosfera , Estaciones del Año , Microbiología del Suelo , Agua
4.
Chemosphere ; 308(Pt 1): 136098, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35995188

RESUMEN

Oxytetracycline and sulfadiazine were widely used and they entered the environment through various channels such as domestic sewage, medical wastewater and agricultural wastewater, causing significant ecological risk. To determine the effects of different antibiotic concentrations on submerged macrophytes, Vallisneria natans was exposed to solutions containing different concentrations of oxytetracycline and sulfadiazine (0.1 mg/L、1 mg/L、10 mg/L、50 mg/L). After 20-days exposure, we found that 10 mg/L groups had a significant effect on Vallisneria natans. Under high antibiotic concentrations, the growth of Vallisneria natans was inhibited, chloroplasts were deformed, the chlorophyll content was reduced, and antioxidant enzyme activities, such as superoxide dismutase and glutathione, were increased. There was no significant difference between the control group and groups with low antibiotic concentrations (≤1 mg/L). The N-acyl-l-homoserine lactone concentration tended to increase with increasing antibiotic concentrations. The presence of antibiotics also affected the microbial community structure of biofilms on the submerged macrophytes. For example, the higher the concentration of antibiotics, the higher the proportion of Proteobacteria. These results suggest that high concentrations of oxytetracycline and sulfadiazine can disrupt homeostasis, induce effective Vallisneria natans defense mechanisms and alter biofilms in aquatic ecosystems.


Asunto(s)
Hydrocharitaceae , Microbiota , Oxitetraciclina , Antibacterianos/toxicidad , Antioxidantes/farmacología , Biopelículas , Clorofila , Glutatión/farmacología , Hydrocharitaceae/fisiología , Oxitetraciclina/toxicidad , Hojas de la Planta , Aguas del Alcantarillado , Sulfadiazina/toxicidad , Superóxido Dismutasa , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA