Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
J Virol ; 98(3): e0185023, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38415596

Morbilliviruses are members of the family Paramyxoviridae and are known for their ability to cause systemic disease in a variety of mammalian hosts. The prototypic morbillivirus, measles virus (MeV), infects humans and still causes morbidity and mortality in unvaccinated children and young adults. Experimental infection studies in non-human primates have contributed to the understanding of measles pathogenesis. However, ethical restrictions call for the development of new animal models. Canine distemper virus (CDV) infects a wide range of animals, including ferrets, and its pathogenesis shares many features with measles. However, wild-type CDV infection is almost always lethal, while MeV infection is usually self-limiting. Here, we made five recombinant CDVs, predicted to be attenuated, and compared their pathogenesis to the non-attenuated recombinant CDV in a ferret model. Three viruses were insufficiently attenuated based on clinical signs, fatality, and systemic infection, while one virus was too attenuated. The last candidate virus caused a self-limiting infection associated with transient viremia and viral dissemination to all lymphoid tissues, was shed transiently from the upper respiratory tract, and did not result in acute neurological signs. Additionally, an in-depth phenotyping of the infected white blood cells showed lower infection percentages in all lymphocyte subsets when compared to the non-attenuated CDV. In conclusion, infection models using this candidate virus mimic measles and can be used to study pathogenesis-related questions and to test interventions for morbilliviruses in a natural host species.IMPORTANCEMorbilliviruses are transmitted via the respiratory route but cause systemic disease. The viruses use two cellular receptors to infect myeloid, lymphoid, and epithelial cells. Measles virus (MeV) remains an important cause of morbidity and mortality in humans, requiring animal models to study pathogenesis or intervention strategies. Experimental MeV infections in non-human primates are restricted by ethical and practical constraints, and animal morbillivirus infections in natural host species have been considered as alternatives. Inoculation of ferrets with wild-type canine distemper virus (CDV) has been used for this purpose, but in most cases, the virus overwhelms the immune system and causes highly lethal disease. Introduction of an additional transcription unit and an additional attenuating point mutation in the polymerase yielded a candidate virus that caused self-limiting disease with transient viremia and virus shedding. This rationally attenuated CDV strain can be used for experimental morbillivirus infections in ferrets that reflect measles in humans.


Disease Models, Animal , Distemper Virus, Canine , Ferrets , Measles , Morbillivirus Infections , Animals , Dogs , Humans , Distemper/virology , Distemper Virus, Canine/genetics , Measles/pathology , Measles virus/genetics , Morbillivirus/genetics , Morbillivirus Infections/pathology , Primates , Viremia
2.
Vaccine ; 41(43): 6495-6504, 2023 10 13.
Article En | MEDLINE | ID: mdl-37726181

Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.


Chikungunya Fever , Chikungunya virus , Viral Vaccines , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Chikungunya Fever/prevention & control , Epitopes, T-Lymphocyte , Measles Vaccine , Measles virus
3.
Am J Transplant ; 23(9): 1411-1424, 2023 09.
Article En | MEDLINE | ID: mdl-37270109

T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.


COVID-19 , Kidney Diseases , Kidney Transplantation , Humans , COVID-19 Vaccines , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , Interleukins , Immunoglobulin G , Antibodies, Viral , Immunity , Transplant Recipients
4.
mSphere ; 8(4): e0008223, 2023 08 24.
Article En | MEDLINE | ID: mdl-37377421

Canine distemper virus (CDV) causes systemic infection resulting in severe and often fatal disease in a large spectrum of animal host species. The virus is closely related to measles virus and targets myeloid, lymphoid, and epithelial cells, but CDV is more virulent and the infection spreads more rapidly within the infected host. Here, we aimed to study the pathogenesis of wild-type CDV infection by experimentally inoculating ferrets with recombinant CDV (rCDV) based on an isolate directly obtained from a naturally infected raccoon. The recombinant virus was engineered to express a fluorescent reporter protein, facilitating assessment of viral tropism and virulence. In ferrets, this wild type-based rCDV infected myeloid, lymphoid, and epithelial cells, and the infection resulted in systemic dissemination to multiple tissues and organs, especially those of the lymphatic system. High infection percentages in immune cells resulted in depletion of these cells both from circulation and from lymphoid tissues. The majority of CDV-infected ferrets reached their humane endpoints within 20 d and had to be euthanized. In that period, the virus also reached the central nervous system in several ferrets, but we did not observe the development of neurological complications during the study period of 23 d. Two out of 14 ferrets survived CDV infection and developed neutralizing antibodies. We show for the first time the pathogenesis of a non-adapted wild type-based rCDV in ferrets. IMPORTANCE Infection of ferrets with recombinant canine distemper virus (rCDV) expressing a fluorescent reporter protein has been used as proxy to understand measles pathogenesis and immune suppression in humans. CDV and measles virus use the same cellular receptors, but CDV is more virulent, and infection is often associated with neurological complications. rCDV strains in current use have complicated passage histories, which may have affected their pathogenesis. Here, we studied the pathogenesis of the first wild type-based rCDV in ferrets. We used macroscopic fluorescence to identify infected cells and tissues; multicolor flow cytometry to determine viral tropism in immune cells; and histopathology and immunohistochemistry to characterize infected cells and lesions in tissues. We conclude that CDV often overwhelmed the immune system, resulting in viral dissemination to multiple tissues in the absence of a detectable neutralizing antibody response. This virus is a promising tool to study the pathogenesis of morbillivirus infections.


Distemper Virus, Canine , Distemper , Humans , Dogs , Animals , Distemper Virus, Canine/genetics , Ferrets , Distemper/pathology , Epithelial Cells/pathology , Measles virus/genetics , Antibodies, Neutralizing , Immune System/pathology
5.
NPJ Vaccines ; 8(1): 70, 2023 May 17.
Article En | MEDLINE | ID: mdl-37198189

Cytokines are regulators of the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the contribution of cytokine-secreting CD4+ and CD8+ memory T cells to the SARS-CoV-2-specific humoral immune response in immunocompromised kidney patients is unknown. Here, we profiled 12 cytokines after stimulation of whole blood obtained 28 days post second 100 µg mRNA-1273 vaccination with peptides covering the SARS-CoV-2 spike (S)-protein from patients with chronic kidney disease (CKD) stage 4/5, on dialysis, kidney transplant recipients (KTR), and healthy controls. Unsupervised hierarchical clustering analysis revealed two distinct vaccine-induced cytokine profiles. The first profile was characterized by high levels of T-helper (Th)1 (IL-2, TNF-α, and IFN-γ) and Th2 (IL-4, IL-5, IL-13) cytokines, and low levels of Th17 (IL-17A, IL-22) and Th9 (IL-9) cytokines. This cluster was dominated by patients with CKD, on dialysis, and healthy controls. In contrast, the second cytokine profile contained predominantly KTRs producing mainly Th1 cytokines upon re-stimulation, with lower levels or absence of Th2, Th17, and Th9 cytokines. Multivariate analyses indicated that a balanced memory T cell response with the production of Th1 and Th2 cytokines was associated with high levels of S1-specific binding and neutralizing antibodies mainly at 6 months after second vaccination. In conclusion, seroconversion is associated with the balanced production of cytokines by memory T cells. This emphasizes the importance of measuring multiple T cell cytokines to understand their influence on seroconversion and potentially gain more information about the protection induced by vaccine-induced memory T cells.

6.
Lancet Infect Dis ; 23(8): 901-913, 2023 08.
Article En | MEDLINE | ID: mdl-37088096

BACKGROUND: Bivalent mRNA-based COVID-19 vaccines encoding the ancestral and omicron spike (S) protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We aimed to assess the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent omicron (BA.1) vaccines in individuals who were primed with adenovirus-based or mRNA-based vaccines encoding the ancestral spike protein. METHODS: We analysed results of the direct boost group of the SWITCH ON study, an open-label, multicentre, randomised controlled trial. Health-care workers from four academic hospitals in the Netherlands aged 18-65 years who had completed a primary COVID-19 vaccination regimen and received one booster of an mRNA-based vaccine, given no later than 3 months previously, were eligible. Participants were randomly assigned (1:1) using computer software in block sizes of 16 and 24 to receive an omicron BA.1 bivalent booster straight away (direct boost group) or a bivalent omicron BA.5 booster, postponed for 90 days (postponed boost group), stratified by priming regimen. The BNT162b2 OMI BA.1 boost was given to participants younger than 45 years, and the mRNA-1273.214 boost was given to participants 45 years or older, as per Dutch guidelines. The direct boost group, whose results are presented here, were divided into four subgroups for analysis: (1) Ad26.COV2.S (Johnson & Johnson) prime and BNT162b2 OMI BA.1 (BioNTech-Pfizer) boost (Ad/P), (2) mRNA-based prime and BNT162b2 OMI BA.1 boost (mRNA/P), (3) Ad26.COV2.S prime and mRNA-1273.214 (Moderna) boost (Ad/M), and (4) mRNA-based prime and mRNA-1273.214 boost (mRNA/M). The primary outcome was fold change in S protein S1 subunit-specific IgG antibodies before and 28 days after booster vaccination. The primary outcome and safety were assessed in all participants except those who withdrew, had a SARS-CoV-2 breakthrough infection, or had a missing blood sample at day 0 or day 28. This trial is registered with ClinicalTrials.gov, NCT05471440. FINDINGS: Between Sept 2 and Oct 4, 2022, 219 (50%) of 434 eligible participants were randomly assigned to the direct boost group; 187 participants were included in the primary analyses; exclusions were mainly due to SARS-CoV-2 infection between days 0 and 28. From the 187 included participants, 138 (74%) were female and 49 (26%) were male. 42 (22%) of 187 participants received Ad/P and 44 (24%) mRNA/P (those aged <45 years), and 45 (24%) had received Ad/M and 56 (30%) mRNA/M (those aged ≥45 years). S1-specific binding antibody concentrations increased 7 days after bivalent booster vaccination and remained stable over 28 days in all four subgroups (geometric mean ratio [GMR] between day 0 and day 28 was 1·15 [95% CI 1·12-1·19] for the Ad/P group, 1·17 [1·14-1·20] for the mRNA/P group, 1·20 [1·17-1·23] for the Ad/M group, and 1·16 [1·13-1·19] for the mRNA/M group). We observed no significant difference in the GMR between the Ad/P and mRNA/P groups (p=0·51). The GMR appeared to be higher in the Ad/M group than in the mRNA/M group, but was not significant (p=0·073). Most side-effects were mild to moderate in severity and resolved within 48 h in most individuals. INTERPRETATION: Booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 in adult healthcare workers resulted in a rapid recall of humoral and cellular immune responses independent of the priming regimen. Monitoring of SARS-CoV-2 immunity at the population level, and simultaneously antigenic drift at the virus level, remains crucial to assess the necessity and timing of COVID-19 variant-specific booster vaccinations. FUNDING: The Netherlands Organization for Health Research and Development (ZonMw).


Ad26COVS1 , COVID-19 , Adult , Humans , Female , Male , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Netherlands , SARS-CoV-2/genetics , Health Personnel , Antibodies, Viral , Immunogenicity, Vaccine , Vaccination , Antibodies, Neutralizing
8.
iScience ; 26(1): 105753, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36507223

The emergence of novel SARS-CoV-2 variants led to the recommendation of booster vaccinations after Ad26.COV2.S priming. It was previously shown that heterologous booster vaccination induces high antibody levels, but how heterologous boosters affect other functional aspects of the immune response remained unknown. Here, we performed immunological profiling of Ad26.COV2.S-primed individuals before and after homologous or heterologous (mRNA-1273 or BNT162b2) booster. Booster vaccinations increased functional antibodies targeting ancestral SARS-CoV-2 and emerging variants. Especially heterologous booster vaccinations induced high levels of functional antibodies. In contrast, T-cell responses were similar in magnitude following homologous or heterologous booster vaccination and retained cross-reactivity towards variants. Booster vaccination led to a minimal expansion of SARS-CoV-2-specific T-cell clones and no increase in the breadth of the T-cell repertoire. In conclusion, we show that Ad26.COV2.S priming vaccination provided a solid immunological base for heterologous boosting, increasing humoral and cellular responses targeting emerging variants of concern.

9.
J Infect Dis ; 227(5): 651-662, 2023 03 01.
Article En | MEDLINE | ID: mdl-36402141

BACKGROUND: The COVIH study is a prospective coronavirus disease 2019 (COVID-19) vaccination study in 1154 people with HIV (PWH), of whom 14% showed reduced antibody levels after primary vaccination. We evaluated whether an additional vaccination boosts immune responses in these hyporesponders. METHODS: The primary end point was the increase in antibodies 28 days after additional mRNA-1273 vaccination. Secondary end points included neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. RESULTS: Of the 66 participants, 40 previously received 2 doses ChAdOx1-S, 22 received 2 doses BNT162b2, and 4 received a single dose Ad26.COV2.S. The median age was 63 years (interquartile range [IQR], 60-66), 86% were male, and median CD4+ T-cell count was 650/µL (IQR, 423-941). The mean S1-specific antibody level increased from 35 binding antibody units (BAU)/mL (95% confidence interval [CI], 24-46) to 4317 BAU/mL (95% CI, 3275-5360) (P < .0001). Of all participants, 97% showed an adequate response and the 45 antibody-negative participants all seroconverted. A significant increase in the proportion of PWH with ancestral S-specific CD4+ T cells (P = .04) and S-specific B cells (P = .02) was observed. CONCLUSIONS: An additional mRNA-1273 vaccination induced a robust serological response in 97% of PWH with a hyporesponse after primary vaccination. Clinical Trials Registration. EUCTR2021-001054-57-N.


COVID-19 , HIV Infections , Female , Humans , Male , Middle Aged , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19 Vaccines , Prospective Studies , SARS-CoV-2 , Vaccination , Aged
10.
Lancet Infect Dis ; 23(3): 307-319, 2023 Mar.
Article En | MEDLINE | ID: mdl-36354032

BACKGROUND: An urgent need exists to improve the suboptimal COVID-19 vaccine response in kidney transplant recipients (KTRs). We aimed to compare three alternative strategies with a control single dose mRNA-1273 vaccination: a double vaccine dose, heterologous vaccination, and temporary discontinuation of mycophenolate mofetil or mycophenolic acid. METHODS: This open-label randomised trial, done in four university medical centres in the Netherlands, enrolled KTRs without seroconversion after two or three doses of an mRNA vaccine. Between Oct 20, 2021, and Feb 2, 2022, 230 KTRs were randomly assigned block-wise per centre by a web-based system in a 1:1:1 manner to receive 100 µg mRNA-1273, 2 × 100 µg mRNA-1273, or Ad26.COV2-S vaccination. In addition, 103 KTRs receiving 100 µg mRNA-1273, were randomly assigned 1:1 to continue (mycophenolate mofetil+) or discontinue (mycophenolate mofetil-) mycophenolate mofetil or mycophenolic acid treatment for 2 weeks. The primary outcome was the percentage of participants with a spike protein (S1)-specific IgG concentration of at least 10 binding antibody units per mL at 28 days after vaccination, assessed in all participants who had a baseline measurement and who completed day 28 after vaccination without SARS-CoV-2 infection. Safety was assessed as a secondary outcome in all vaccinated patients by incidence of solicited adverse events, acute rejection or other serious adverse events. This trial is registered with ClinicalTrials.gov, NCT05030974 and is closed. FINDINGS: Between April 23, 2021, and July 2, 2021, of 12 158 invited Dutch KTRs, 3828 with a functioning kidney transplant participated in a national survey for antibody measurement after COVID-19 vaccination. Of these patients, 1311 did not seroconvert after their second vaccination and another 761 not even after a third. From these seronegative patients, 345 agreed to participate in our repeated vaccination study. Vaccination with 2 × mRNA-1273 or Ad26.COV2-S was not superior to single mRNA-1273, with seroresponse rates of 49 (68%) of 72 (95% CI 56-79), 46 (63%) of 73 (51-74), and 50 (68%) of 73 (57-79), respectively. The difference with single mRNA-1273 was -0·4% (-16 to 15; p=0·96) for 2 × mRNA-1273 and -6% (-21 to 10; p=0·49) for Ad26.COV2-S. Mycophenolate mofetil- was also not superior to mycophenolate mofetil+, with seroresponse rates of 37 (80%) of 46 (66-91) and 31 (67%) of 46 (52-80), and a difference of 13% (-5 to 31; p=0·15). Local adverse events were more frequent after a single and double dose of mRNA-1273 than after Ad26.COV2-S (65 [92%] of 71, 67 [92%] of 73, and 38 [50%] of 76, respectively; p<0·0001). No acute rejection occurred. There were no serious adverse events related to vaccination. INTERPRETATION: Repeated vaccination increases SARS-CoV-2-specific antibodies in KTRs, without further enhancement by use of a higher dose, a heterologous vaccine, or 2 weeks discontinuation of mycophenolate mofetil or mycophenolic acid. To achieve a stronger response, possibly required to neutralise new virus variants, repeated booster vaccination is needed. FUNDING: The Netherlands Organization for Health Research and Development and the Dutch Kidney Foundation.


COVID-19 , Kidney Transplantation , Humans , COVID-19 Vaccines , Mycophenolic Acid , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , Antibodies, Viral , Immunogenicity, Vaccine , Double-Blind Method , mRNA Vaccines
11.
Clin Infect Dis ; 76(3): e188-e199, 2023 02 08.
Article En | MEDLINE | ID: mdl-35796536

BACKGROUND: The immune response to COVID-19 vaccination is inferior in kidney transplant recipients (KTRs) and to a lesser extent in patients on dialysis or with chronic kidney disease (CKD). We assessed the immune response 6 months after mRNA-1273 vaccination in kidney patients and compared this to controls. METHODS: A total of 152 participants with CKD stages G4/5 (eGFR <30 mL/min/1.73 m2), 145 participants on dialysis, 267 KTRs, and 181 controls were included. SARS-CoV-2 Spike S1 specific IgG antibodies were measured using fluorescent bead-based multiplex-immunoassay, neutralizing antibodies to ancestral, Delta, and Omicron (BA.1) variants by plaque reduction, and T-cell responses by interferon-γ release assay. RESULTS: At 6 months after vaccination, S1-specific antibodies were detected in 100% of controls, 98.7% of CKD G4/5 patients, 95.1% of dialysis patients, and 56.6% of KTRs. These figures were comparable to the response rates at 28 days, but antibody levels waned significantly. Neutralization of the ancestral and Delta variants was detected in most participants, whereas neutralization of Omicron was mostly absent. S-specific T-cell responses were detected at 6 months in 75.0% of controls, 69.4% of CKD G4/5 patients, 52.6% of dialysis patients, and 12.9% of KTRs. T-cell responses at 6 months were significantly lower than responses at 28 days. CONCLUSIONS: Although seropositivity rates at 6 months were comparable to rates at 28 days after vaccination, significantly decreased antibody levels and T-cell responses were observed. The combination of low antibody levels, reduced T-cell responses, and absent neutralization of the newly emerging variants indicates the need for additional boosts or alternative vaccination strategies in KTRs. CLINICAL TRIALS REGISTRATION: NCT04741386.


COVID-19 , Kidney Transplantation , Renal Insufficiency, Chronic , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunoglobulin G , Renal Dialysis , Renal Insufficiency, Chronic/therapy , SARS-CoV-2 , T-Lymphocytes , Vaccination
12.
Clin Infect Dis ; 76(3): e533-e536, 2023 02 08.
Article En | MEDLINE | ID: mdl-35723273

The emergence of SARS-CoV-2 variants raised questions regarding the durability of immune responses after homologous or heterologous boosters after Ad26.COV2.S-priming. We found that SARS-CoV-2-specific binding antibodies, neutralizing antibodies, and T cells are detectable 5 months after boosting, although waning of antibodies and limited cross-reactivity with Omicron BA.1 was observed.


Ad26COVS1 , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Health Personnel , Immunity
13.
Front Immunol ; 13: 1067749, 2022.
Article En | MEDLINE | ID: mdl-36524126

Vaccination against coronavirus disease 2019 (COVID-19) has contributed greatly to providing protection against severe disease, thereby reducing hospital admissions and deaths. Several studies have reported reduction in vaccine effectiveness over time against the Omicron sub-lineages. However, the willingness to receive regular booster doses in the general population is declining. To determine the need for repeated booster vaccinations in healthy individuals and to aid policymakers in future public health interventions for COVID-19, we aim to gain insight into the immunogenicity of the additional bivalent booster vaccination in a representative sample of the healthy Dutch population. The SWITCH ON study was initiated to investigate three main topics: i) immunogenicity of bivalent vaccines after priming with adenovirus- or mRNA-based vaccines, ii) immunological recall responses and reactivity with relevant variants after booster vaccination, and iii) the necessity of booster vaccinations for the healthy population in the future. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05471440.


COVID-19 , Humans , COVID-19/prevention & control , Health Personnel , Vaccination , Health Status , Public Health
14.
PLoS Med ; 19(10): e1003979, 2022 10.
Article En | MEDLINE | ID: mdl-36301821

BACKGROUND: Vaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. In this study we set out to investigate, for the vaccines currently approved in the Netherlands, the immunogenicity and reactogenicity of SARS-CoV-2 vaccinations in PLWH. METHODS AND FINDINGS: We conducted a prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S, and Ad26.COV2.S vaccines in adult PLWH without prior COVID-19, and compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response, and reactogenicity. Between 14 February and 7 September 2021, 1,154 PLWH (median age 53 [IQR 44-60] years, 85.5% male) and 440 controls (median age 43 [IQR 33-53] years, 28.6% male) were included in the final analysis. Of the PLWH, 884 received BNT162b2, 100 received mRNA-1273, 150 received ChAdOx1-S, and 20 received Ad26.COV2.S. In the group of PLWH, 99% were on antiretroviral therapy, 97.7% were virally suppressed, and the median CD4+ T-cell count was 710 cells/µL (IQR 520-913). Of the controls, 247 received mRNA-1273, 94 received BNT162b2, 26 received ChAdOx1-S, and 73 received Ad26.COV2.S. After mRNA vaccination, geometric mean antibody concentration was 1,418 BAU/mL in PLWH (95% CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV status remained associated with a decreased response (0.607, 95% CI 0.508-0.725, p < 0.001). All controls receiving an mRNA vaccine had an adequate response, defined as >300 BAU/mL, whilst in PLWH this response rate was 93.6%. In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+ T-cell count 250-500 cells/µL (2.845, 95% CI 1.876-4.314, p < 0.001) or >500 cells/µL (2.936, 95% CI 1.961-4.394, p < 0.001), whilst a viral load > 50 copies/mL was associated with a reduced response (0.454, 95% CI 0.286-0.720, p = 0.001). Increased IFN-γ, CD4+ T-cell, and CD8+ T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation-induced marker assays, comparable to controls. Reactogenicity was generally mild, without vaccine-related serious adverse events. Due to the control of vaccine provision by the Dutch National Institute for Public Health and the Environment, there were some differences between vaccine groups in the age, sex, and CD4+ T-cell counts of recipients. CONCLUSIONS: After vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH compared to HIV-negative controls. To reach and maintain the same serological responses as HIV-negative controls, additional vaccinations are probably required. TRIAL REGISTRATION: The trial was registered in the Netherlands Trial Register (NL9214). https://www.trialregister.nl/trial/9214.


COVID-19 Vaccines , COVID-19 , HIV Infections , Adult , Female , Humans , Male , Middle Aged , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , HIV Infections/immunology , Immunogenicity, Vaccine , Immunoglobulin G , Netherlands/epidemiology , Prospective Studies , RNA, Messenger , SARS-CoV-2 , mRNA Vaccines
15.
mBio ; 13(3): e0124922, 2022 06 28.
Article En | MEDLINE | ID: mdl-35695453

The ability of SARS-CoV-2 to evolve in response to selective pressures poses a challenge to vaccine and antiviral efficacy. The S1 subunit of the spike (S) protein contains the receptor-binding domain and is therefore under selective pressure to evade neutralizing antibodies elicited by vaccination or infection. In contrast, the S2 subunit of S is only transiently exposed after receptor binding, which makes it a less efficient target for antibodies. As a result, S2 has a lower mutational frequency than S1. We recently described monomeric and dimeric SARS-CoV-2 fusion-inhibitory lipopeptides that block viral infection by interfering with S2 conformational rearrangements during viral entry. Importantly, a dimeric lipopeptide was shown to block SARS-CoV-2 transmission between ferrets in vivo. Because the S2 subunit is relatively conserved in newly emerging SARS-CoV-2 variants of concern (VOCs), we hypothesize that fusion-inhibitory lipopeptides are cross-protective against infection with VOCs. Here, we directly compared the in vitro efficacies of two fusion-inhibitory lipopeptides against VOC, in comparison with a set of seven postvaccination sera (two doses) and a commercial monoclonal antibody preparation. For the beta, delta, and omicron VOCs, it has been reported that convalescent and postvaccination sera are less potent in virus neutralization assays. Both fusion-inhibitory lipopeptides were equally effective against all five VOCs compared to ancestral virus, whereas postvaccination sera and therapeutic monoclonal antibody lost potency to newer VOCs, in particular to omicron BA.1 and BA.2. The neutralizing activity of the lipopeptides is consistent, and they can be expected to neutralize future VOCs based on their mechanism of action. IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, with waves resulting from new variants that evade immunity generated by vaccines and previous strains and escape available monoclonal antibody therapy. Fusion-inhibitory peptides may provide an intervention strategy that is not similarly affected by this viral evolution.


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Ferrets , Humans , Lipopeptides/chemistry , Lipopeptides/pharmacology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
16.
J Allergy Clin Immunol ; 149(6): 1949-1957, 2022 06.
Article En | MEDLINE | ID: mdl-35421449

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS: In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.


2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , COVID-19 , Genetic Diseases, Inborn , Immunologic Deficiency Syndromes , 2019-nCoV Vaccine mRNA-1273/blood , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
17.
Sci Immunol ; 7(69): eabo2202, 2022 03 25.
Article En | MEDLINE | ID: mdl-35113647

The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T cell responses targeting SARS-CoV-2 D614G [wild type (WT)] and the Beta, Delta, and Omicron variants of concern in a cohort of 60 health care workers after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273, or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which substantially decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays showed consistent cross-neutralization of the Beta and Delta variants, but neutralization of Omicron was significantly lower or absent. BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV2 priming partially restored neutralization of the Omicron variant, but responses were still up to 17-fold decreased compared with WT. SARS-CoV-2-specific T cells were detected up to 6 months after all vaccination regimens, with more consistent detection of specific CD4+ than CD8+ T cells. No significant differences were detected between WT- and variant-specific CD4+ or CD8+ T cell responses, including Omicron, indicating minimal escape at the T cell level. This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations are needed to further restore Omicron cross-neutralization by antibodies.


COVID-19 , SARS-CoV-2 , Ad26COVS1 , BNT162 Vaccine , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans
18.
N Engl J Med ; 386(10): 951-963, 2022 03 10.
Article En | MEDLINE | ID: mdl-35045226

BACKGROUND: The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear. METHODS: In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting. RESULTS: Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration. CONCLUSIONS: The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).


Ad26COVS1/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G/blood , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Antibodies, Neutralizing/blood , BNT162 Vaccine/immunology , Female , Humans , Interferon-gamma/blood , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , T-Lymphocytes/immunology
19.
Transplantation ; 106(4): 821-834, 2022 04 01.
Article En | MEDLINE | ID: mdl-34753894

BACKGROUND: In kidney patients COVID-19 is associated with severely increased morbidity and mortality. A comprehensive comparison of the immunogenicity, tolerability, and safety of COVID-19 vaccination in different cohorts of kidney patients and a control cohort is lacking. METHODS: This investigator driven, prospective, controlled multicenter study included 162 participants with chronic kidney disease (CKD) stages G4/5 (eGFR < 30 mL/min/1.73m2), 159 participants on dialysis, 288 kidney transplant recipients, and 191 controls. Participants received 2 doses of the mRNA-1273 COVID-19 vaccine (Moderna). The primary endpoint was seroconversion. RESULTS: Transplant recipients had a significantly lower seroconversion rate when compared with controls (56.9% versus 100%, P < 0.001), with especially mycophenolic acid, but also, higher age, lower lymphocyte concentration, lower eGFR, and shorter time after transplantation being associated with nonresponder state. Transplant recipients also showed significantly lower titers of neutralizing antibodies and T-cell responses when compared with controls. Although a high seroconversion rate was observed for participants with CKD G4/5 (100%) and on dialysis (99.4%), mean antibody concentrations in the CKD G4/5 cohort and dialysis cohort were lower than in controls (2405 [interquartile interval 1287-4524] and 1650 [698-3024] versus 3186 [1896-4911] BAU/mL, P = 0.06 and P < 0.001, respectively). Dialysis patients and especially kidney transplant recipients experienced less systemic vaccination related adverse events. No specific safety issues were noted. CONCLUSIONS: The immune response following vaccination in patients with CKD G4/5 and on dialysis is almost comparable to controls. In contrast, kidney transplant recipients have a poor response. In this latter, patient group development of alternative vaccination strategies are warranted.


COVID-19 , Kidney Transplantation , Renal Insufficiency, Chronic , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Kidney Transplantation/adverse effects , Prospective Studies , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Vaccination
...