Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Phys Rev Lett ; 125(12): 127201, 2020 Sep 18.
Article En | MEDLINE | ID: mdl-33016712

We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M_{3,2} absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16 mJ/cm^{2}/pulse to 10 000 mJ/cm^{2}/pulse with pulse lengths of 70 fs and 120 fs. A progressive quenching of the diffraction cross-section with fluence is observed. Compression of the same pulse energy into a shorter pulse-implying an increased XUV peak electric field-results in a reduced quenching of the resonant diffraction at the Co M_{3,2} edge. We conclude that the quenching effect observed for resonant scattering involving the short-lived Co 3p core vacancies is noncoherent in nature. This finding is in contrast to previous reports investigating resonant scattering involving the longer-lived Co 2p states, where stimulated emission has been found to be important. A phenomenological model based on XUV-induced ultrafast demagnetization is able to reproduce our entire set of experimental data and is found to be consistent with independent magneto-optical measurements of the demagnetization dynamics on the same samples.

2.
Ultramicroscopy ; 214: 113005, 2020 Jul.
Article En | MEDLINE | ID: mdl-32416436

The spatial resolution of microscopic images acquired via X-ray Fourier-transform holography is limited by the source size of the reference wave and by the numerical aperture of the detector. We analyze the interplay between both influences and show how they are matched in practice. We further identify, how high spatial frequencies translate to imaging artifacts in holographic reconstructions where mainly the reference beam limits the spatial resolution. As a solution, three methods are introduced based on numerical post-processing of the reconstruction. The methods comprise apodization of the hologram, refocusing via wave propagation, and deconvolution using the transfer function of the imaging system. In particular for the latter two, we demonstrate that image details smaller than the source size of the reference beam can be recovered up to the diffraction limit of the hologram. Our findings motivate the intentional application of a large reference-wave source enhancing the image contrast in applications with low photon numbers such as single-shot experiments at free-electron lasers or imaging at laboratory sources.

3.
Nat Nanotechnol ; 12(11): 1040-1044, 2017 11.
Article En | MEDLINE | ID: mdl-28967891

Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

4.
Struct Dyn ; 4(1): 014301, 2017 Jan.
Article En | MEDLINE | ID: mdl-28289691

We present an element specific and spatially resolved view of magnetic domains in Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonant small-angle scattering and coherent imaging with Fourier-transform holography reveal nanoscale magnetic domain networks via magnetic dichroism of Co at the M2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt. We demonstrate for the first time simultaneous, two-color coherent imaging at a free-electron laser facility paving the way for a direct real space access to ultrafast magnetization dynamics in complex multicomponent material systems.

5.
Opt Express ; 24(2): 1840-51, 2016 Jan 25.
Article En | MEDLINE | ID: mdl-26832562

Ptychography is a lensless imaging technique that aims to reconstruct an object from a set of coherent diffraction patterns originating from different and partially overlapping sample illumination areas. For a successful convergence of the iterative algorithms used, the sample scan positions have to be known with very high accuracy. Here, we present a method that allows to directly encode this information in the diffraction patterns without the need of accurate position encoders. Our approach relies on combining ptychography with another coherent imaging method, namely Fourier-transform holography. We have imaged two different objects using coherent soft-X-ray illumination and investigate the influence of experimental and numerical position refinement on the reconstruction result. We demonstrate that holographically encoded positions significantly reduce the experimental and numerical requirements. Our ptychographic reconstructions cover a large field of view with diffraction-limited resolution and high sensitivity in the reconstructed phase shift and absorption of the objects.

6.
Phys Rev Lett ; 108(22): 223902, 2012 Jun 01.
Article En | MEDLINE | ID: mdl-23003595

In preparation for real space studies of magnetic domains in a pump-probe setup at free-electron laser sources, it is necessary to develop an imaging method compatible with the linearly polarized radiation available at these sources. We present results from a prototype experiment performed at the synchrotron source BESSY II, using a modification of existing phase retrieval techniques. Our results show that it is possible to image magnetic domains in real space using linear polarized light, and we introduce the concept of a reliability map of our reconstructions using Gabor transforms.

...