Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5529, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956039

RESUMEN

Left unchecked, plant-parasitic nematodes have the potential to devastate crops globally. Highly effective but non-selective nematicides are justifiably being phased-out, leaving farmers with limited options for managing nematode infestation. Here, we report our discovery of a 1,3,4-oxadiazole thioether scaffold called Cyprocide that selectively kills nematodes including diverse species of plant-parasitic nematodes. Cyprocide is bioactivated into a lethal reactive electrophilic metabolite by specific nematode cytochrome P450 enzymes. Cyprocide fails to kill organisms beyond nematodes, suggesting that the targeted lethality of this pro-nematicide derives from P450 substrate selectivity. Our findings demonstrate that Cyprocide is a selective nematicidal scaffold with broad-spectrum activity that holds the potential to help safeguard our global food supply.


Asunto(s)
Antinematodos , Sistema Enzimático del Citocromo P-450 , Nematodos , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Nematodos/efectos de los fármacos , Antinematodos/farmacología , Sulfuros/farmacología , Sulfuros/química
2.
Dis Model Mech ; 15(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35293586

RESUMEN

Centronuclear myopathy (CNM) is a congenital neuromuscular disorder caused by pathogenic variation in genes associated with membrane trafficking and excitation-contraction coupling (ECC). Bi-allelic autosomal-recessive mutations in striated muscle enriched protein kinase (SPEG) account for a subset of CNM patients. Previous research has been limited by the perinatal lethality of constitutive Speg knockout mice. Thus, the precise biological role of SPEG in developing skeletal muscle remains unknown. To address this issue, we generated zebrafish spega, spegb and spega;spegb (speg-DKO) mutant lines. We demonstrated that speg-DKO zebrafish faithfully recapitulate multiple phenotypes associated with CNM, including disruption of the ECC machinery, dysregulation of calcium homeostasis during ECC and impairment of muscle performance. Taking advantage of zebrafish models of multiple CNM genetic subtypes, we compared novel and known disease markers in speg-DKO with mtm1-KO and DNM2-S619L transgenic zebrafish. We observed Desmin accumulation common to all CNM subtypes, and Dnm2 upregulation in muscle of both speg-DKO and mtm1-KO zebrafish. In all, we establish a new model of SPEG-related CNM, and identify abnormalities in this model suitable for defining disease pathomechanisms and evaluating potential therapies. This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Miopatías Estructurales Congénitas , Pez Cebra , Animales , Dinamina II/genética , Dinamina II/metabolismo , Humanos , Ratones , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Schizophr Res ; 249: 63-73, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33189520

RESUMEN

Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/diagnóstico por imagen , Ácido Glutámico , Ácido Aspártico , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA