Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Article En | MEDLINE | ID: mdl-37186990

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Wound Infection , Humans , Vitamin K 3/pharmacology , Vitamin K 3/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Biofilms , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
3.
FASEB J ; 34(10): 13877-13884, 2020 10.
Article En | MEDLINE | ID: mdl-32856766

The diagnosis of COVID-19 requires integration of clinical and laboratory data. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic assays play a central role in diagnosis and have fixed technical performance metrics. Interpretation becomes challenging because the clinical sensitivity changes as the virus clears and the immune response emerges. Our goal was to examine the clinical sensitivity of two most common SARS-CoV-2 diagnostic test modalities, polymerase chain reaction (PCR) and serology, over the disease course to provide insight into their clinical interpretation in patients presenting to the hospital. We conducted a single-center, retrospective study. To derive clinical sensitivity of PCR, we identified 209 PCR-positive SARS-CoV-2 patients with multiple PCR test results (624 total PCR tests) and calculated daily sensitivity from date of symptom onset or first positive test. Clinical sensitivity of PCR decreased with days post symptom onset with >90% clinical sensitivity during the first 5 days after symptom onset, 70%-71% from Days 9 to 11, and 30% at Day 21. To calculate daily clinical sensitivity by serology, we utilized 157 PCR-positive patients with a total of 197 specimens tested by enzyme-linked immunosorbent assay for IgM, IgG, and IgA anti-SARS-CoV-2 antibodies. In contrast to PCR, serological sensitivity increased with days post symptom onset with >50% of patients seropositive by at least one antibody isotype after Day 7, >80% after Day 12, and 100% by Day 21. Taken together, PCR and serology are complimentary modalities that require time-dependent interpretation. Superimposition of sensitivities over time indicate that serology can function as a reliable diagnostic aid indicating recent or prior infection.


COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral/blood , COVID-19/blood , Female , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
4.
FASEB J ; 34(5): 6027-6037, 2020 05.
Article En | MEDLINE | ID: mdl-32350928

There are currently no proven or approved treatments for coronavirus disease 2019 (COVID-19). Early anecdotal reports and limited in vitro data led to the significant uptake of hydroxychloroquine (HCQ), and to lesser extent chloroquine (CQ), for many patients with this disease. As an increasing number of patients with COVID-19 are treated with these agents and more evidence accumulates, there continues to be no high-quality clinical data showing a clear benefit of these agents for this disease. Moreover, these agents have the potential to cause harm, including a broad range of adverse events including serious cardiac side effects when combined with other agents. In addition, the known and potent immunomodulatory effects of these agents which support their use in the treatment of auto-immune conditions, and provided a component in the original rationale for their use in patients with COVID-19, may, in fact, undermine their utility in the context of the treatment of this respiratory viral infection. Specifically, the impact of HCQ on cytokine production and suppression of antigen presentation may have immunologic consequences that hamper innate and adaptive antiviral immune responses for patients with COVID-19. Similarly, the reported in vitro inhibition of viral proliferation is largely derived from the blockade of viral fusion that initiates infection rather than the direct inhibition of viral replication as seen with nucleoside/tide analogs in other viral infections. Given these facts and the growing uncertainty about these agents for the treatment of COVID-19, it is clear that at the very least thoughtful planning and data collection from randomized clinical trials are needed to understand what if any role these agents may have in this disease. In this article, we review the datasets that support or detract from the use of these agents for the treatment of COVID-19 and render a data informed opinion that they should only be used with caution and in the context of carefully thought out clinical trials, or on a case-by-case basis after rigorous consideration of the risks and benefits of this therapeutic approach.


Coronavirus Infections/drug therapy , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Datasets as Topic/standards , Heart/drug effects , Humans , Hydroxychloroquine/pharmacology , Immunity, Innate/drug effects , Pandemics , Randomized Controlled Trials as Topic/standards
5.
Photochem Photobiol ; 96(3): 611-617, 2020 05.
Article En | MEDLINE | ID: mdl-32105346

Moraxella catarrhalis is one of the major otopathogens of otitis media (OM) in childhood. M. catarrhalis tends to form biofilm, which contributes to the chronicity and recurrence of infections, as well as resistance to antibiotic treatment. In this study, we aimed to investigate the effectiveness of antimicrobial blue light (aBL; 405 nm), an innovative nonpharmacological approach, for the inactivation of M. catarrhalis OM. M. catarrhalis either in planktonic suspensions or 24-h old biofilms were exposed to aBL at the irradiance of 60 mW cm-2 . Under an aBL exposure of 216 J cm-2 , a >4-log10 colony-forming units (CFU) reduction in planktonic suspensions and a >3-log10 CFU reduction in biofilms were observed. Both transmission electron microscopy and scanning electron microscopy revealed aBL-induced morphological damage in M. catarrhalis. Ultraperformance liquid chromatography results indicated that protoporphyrin IX and coproporphyrin were the two most abundant species of endogenous photosensitizing porphyrins. No statistically significant reduction in the viability of HaCaT cells was observed after an aBL exposure of up to 216 J cm-2 . Collectively, our results suggest that aBL is potentially an effective and safe alternative therapy for OM caused by M. catarrhalis. Further in vivo studies are warranted before this optical approach can be moved to the clinics.


Anti-Bacterial Agents/therapeutic use , Light , Moraxella catarrhalis/radiation effects , Otitis Media/drug therapy , Photosensitizing Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cell Line , Humans , Moraxella catarrhalis/drug effects , Otitis Media/microbiology , Photosensitizing Agents/pharmacology
6.
FASEB J ; 33(5): 6596-6608, 2019 05.
Article En | MEDLINE | ID: mdl-30802149

Blockade of immune-checkpoint programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 can enhance effector T-cell responses. However, the lack of response in many patients to checkpoint-inhibitor therapies emphasizes the need for combination immunotherapies to pursue maximal antitumor efficacy. We have previously demonstrated that antagonism of C-X-C chemokine receptor type 4 (CXCR4) by plerixafor (AMD3100) can decrease regulatory T (Treg)-cell intratumoral infiltration. Therefore, a combination of these 2 therapies might increase antitumor effects. Here, we evaluated the antitumor efficacy of AMD3100 and anti-PD-1 (αPD-1) antibody alone or in combination in an immunocompetent syngeneic mouse model of ovarian cancer. We found that AMD3100, a highly specific CXCR4 antagonist, directly down-regulated the expression of both C-X-C motif chemokine 12 (CXCL12) and CXCR4 in vitro and in vivo in tumor cells. AMD3100 and αPD-1 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice when given as monotherapy. Combination of these 2 agents significantly enhanced antitumor effects compared with single-agent administration. Benefits of tumor control and animal survival were associated with immunomodulation mediated by these 2 agents, which were characterized by increased effector T-cell infiltration, increased effector T-cell function, and increased memory T cells in tumor microenvironment. Intratumoral Treg cells were decreased, and conversion of Treg cells into T helper cells was increased by AMD3100 treatment. Intratumoral myeloid-derived suppressor cells were decreased by the combined treatment, which was associated with decreased IL-10 and IL-6 in the ascites. Also, the combination therapy decreased suppressive leukocytes and facilitated M2-to-M1 macrophage polarization in the tumor. These results suggest that AMD3100 could be used to target the CXCR4-CXCL12 axis to inhibit tumor growth and prevent multifaceted immunosuppression alone or in combination with αPD-1 in ovarian cancer, which could be clinically relevant to patients with this disease.-Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., Liu, Q., Callahan, M. V., Sluder, A. E., Gelfand, J. A., Chen, H., Poznansky, M. C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.


B7-H1 Antigen , Chemokine CXCL12 , Heterocyclic Compounds/pharmacology , Immune Tolerance/drug effects , Neoplasm Proteins , Ovarian Neoplasms , Programmed Cell Death 1 Receptor , Receptors, CXCR4 , Signal Transduction , Tumor Microenvironment , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Benzylamines , Cell Line, Tumor , Chemokine CXCL12/antagonists & inhibitors , Chemokine CXCL12/immunology , Cyclams , Female , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/immunology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
7.
J Infect Dis ; 220(5): 873-881, 2019 07 31.
Article En | MEDLINE | ID: mdl-30629196

Antimicrobial resistance in Neisseria gonorrhoeae is a major issue of public health, and there is a critical need for the development of new antigonococcal strategies. In this study, we investigated the effectiveness of antimicrobial blue light (aBL; wavelength, 405 nm), an innovative nonpharmacological approach, for the inactivation of N. gonorrhoeae. Our findings indicated that aBL preferentially inactivated N. gonorrhoeae, including antibiotic-resistant strains, over human vaginal epithelial cells in vitro. Furthermore, no aBL-induced genotoxicity to the vaginal epithelial cells was observed at the radiant exposure used to inactivate N. gonorrhoeae. aBL also effectively inactivated N. gonorrhoeae that had attached to and invaded into the vaginal epithelial cells in their cocultures. No gonococcal resistance to aBL developed after 15 successive cycles of inactivation induced by subtherapeutic exposure to aBL. Endogenous aBL-activatable photosensitizing porphyrins in N. gonorrhoeae were identified and quantified using ultraperformance liquid chromatography, with coproporphyrin being the most abundant species in all N. gonorrhoeae strains studied. Singlet oxygen was involved in aBL inactivation of N. gonorrhoeae. Together, these findings show that aBL represents a potential potent treatment for antibiotic-resistant gonococcal infection.


Gonorrhea/radiotherapy , Neisseria gonorrhoeae/radiation effects , Abetalipoproteinemia , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/radiation effects , Epithelial Cells/microbiology , Female , Gonorrhea/drug therapy , Humans , Light , Microbial Sensitivity Tests , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/growth & development , Oxygen , Sodium Azide , Vagina/microbiology
8.
FASEB J ; 33(2): 3074-3081, 2019 02.
Article En | MEDLINE | ID: mdl-30192655

Many vaccines require adjuvants to enhance immunogenicity, but there are few safe and effective intradermal (i.d.) adjuvants. Murine studies have validated the potency of laser illumination of skin as an adjuvant for i.d. vaccination with advantages over traditional adjuvants. We report a pilot clinical trial of low-power, continuous-wave, near-infrared laser adjuvant treatment, representing the first human trial of the safety, tolerability, and cutaneous immune cell trafficking changes produced by the laser adjuvant. In this trial we demonstrated a maximum tolerable energy dose of 300 J/cm2 to a spot on the lower back. The irradiated spot was biopsied 4 h later, as was a control spot. Paired biopsies were submitted for histomorphologic and immunohistochemical evaluation in a blinded fashion as well as quantitative PCR analysis for chemokines and cytokines. Similar to prior murine studies, highly significant reductions in CD1a+ Langerhans cells in the dermis and CD11c+ dermal dendritic cells were observed, corresponding to the increased migratory activity of these cells; changes in the epidermis were not significant. There was no evidence of skin damage. The laser adjuvant is a safe, well-tolerated adjuvant for i.d. vaccination in humans and results in significant cutaneous immune cell trafficking.-Gelfand, J. A., Nazarian, R. M., Kashiwagi, S., Brauns, T., Martin, B., Kimizuka, Y., Korek, S., Botvinick, E., Elkins, K., Thomas, L., Locascio, J., Parry, B., Kelly, K. M., Poznansky, M. C. A pilot clinical trial of a near-infrared laser vaccine adjuvant: safety, tolerability, and cutaneous immune cell trafficking.


Adjuvants, Immunologic/administration & dosage , Dendritic Cells/immunology , Lasers , Skin/immunology , Vaccines/administration & dosage , Adolescent , Adult , Cells, Cultured , Dendritic Cells/radiation effects , Female , Humans , Injections, Intradermal , Male , Maximum Tolerated Dose , Middle Aged , Pilot Projects , Skin/radiation effects , Vaccination , Vaccines/immunology , Young Adult
9.
Sci Rep ; 8(1): 17130, 2018 11 20.
Article En | MEDLINE | ID: mdl-30459451

Tetracyclines (including demeclocycline, DMCT, or doxycycline, DOTC) represent a class of dual-action antibacterial compounds, which can act as antibiotics in the dark, and also as photosensitizers under illumination with blue or UVA light. It is known that tetracyclines are taken up inside bacterial cells where they bind to ribosomes. In the present study, we investigated the photochemical mechanism: Type 1 (hydroxyl radicals); Type 2 (singlet oxygen); or Type 3 (oxygen independent). Moreover, we asked whether addition of potassium iodide (KI) could potentiate the aPDI activity of tetracyclines. High concentrations of KI (200-400 mM) strongly potentiated (up to 5 logs of extra killing) light-mediated killing of Gram-negative Escherichia coli or Gram-positive MRSA (although the latter was somewhat less susceptible). KI potentiation was still apparent after a washing step showing that the iodide could penetrate the E. coli cells where the tetracycline had bound. When cells were added to the tetracycline + KI mixture after light, killing was observed in the case of E. coli showing formation of free molecular iodine. Addition of azide quenched the formation of iodine but not hydrogen peroxide. DMCT but not DOTC iodinated tyrosine. Both E. coli and MRSA could be killed by tetracyclines plus light in the absence of oxygen and this killing was not quenched by azide. A mouse model of a superficial wound infection caused by bioluminescent E. coli could be treated by topical application of DMCT and blue light and bacterial regrowth did not occur owing to the continued anti biotic activity of the tetracycline.


Anti-Bacterial Agents/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Potassium Iodide/pharmacology , Tetracyclines/pharmacology , Animals , Drug Synergism , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Hydrogen Peroxide/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred BALB C , Singlet Oxygen/metabolism , Tyrosine/metabolism , Wound Infection/drug therapy
10.
PLoS One ; 13(5): e0196485, 2018.
Article En | MEDLINE | ID: mdl-29742128

Antimicrobial photodynamic inactivation (aPDI) employs photosensitizing dyes activated by visible light to produce reactive oxygen species. aPDI is independent of the antibiotic resistance status of the target cells, and is thought unlikely to produce resistance itself. Among many PS that have been investigated, tetracyclines occupy a unique niche. They are potentially dual-action compounds that can both kill bacteria under illumination, and prevent bacterial regrowth by inhibiting ribosomes. Tetracycline antibiotics are regarded as bacteriostatic rather than bactericidal. Doxycycline (DOTC) is excited best by UVA light (365 nm) while demeclocycline (DMCT) can be efficiently activated by blue light (415 nm) as well as UVA. Both compounds were able to eradicate Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria (>6 log(10) steps of killing) at concentrations (10-50µM) and fluences (10-20J/cm2). In contrast to methylene blue, MB plus red light, tetracyclines photoinactivated bacteria in rich growth medium. When ~3 logs of bacteria were killed with DMCT/DOTC+light and the surviving cells were added to growth medium, further bacterial killing was observed, while the same experiment with MB allowed complete regrowth. MIC studies were carried out either in the dark or exposed to 0.5mW/cm2 blue light. Up to three extra steps (8-fold) increased antibiotic activity was found with light compared to dark, with MRSA and tetracycline-resistant strains of E. coli. Tetracyclines can accumulate in bacterial ribosomes, where they could be photoactivated with blue/UVA light producing microbial killing via ROS generation.


Anti-Bacterial Agents/pharmacology , Tetracyclines/pharmacology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Light , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/metabolism , Methylene Blue/pharmacology , Microbial Sensitivity Tests/methods , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Ribosomes/drug effects
11.
Sci Rep ; 8(1): 7257, 2018 05 08.
Article En | MEDLINE | ID: mdl-29740035

Drug-resistant urinary tract infections (UTIs) are difficult and sometimes impossible to treat. Many UTIs are caused by uropathogenic Escherichia coli (UPEC). We developed an intact rat model of UTI, by catheterizing female rats and introducing a bioluminescent UPEC strain into the female rat bladder which lasted for up to six days. We recently showed that antimicrobial photodynamic inactivation (aPDI) of a bacterial infection mediated by the well-known phenothiazinium salt, methylene blue (MB) could be strongly potentiated by addition of the non-toxic salt potassium iodide (KI). In the intact rat model we introduced MB into the bladder by catheter, followed by KI solution and delivered intravesicular illumination with a diffusing fiber connected to a 1 W 660 nm laser. Bioluminescent imaging of the bacterial burden was carried out during the procedure and for 6 days afterwards. Light-dose dependent loss of bioluminescence was observed with the combination of MB followed by KI, but recurrence of infection was seen the next day in some cases. aPDT with MB + KI gave a significantly shorter duration of infection compared to untreated controls. aPDT with MB alone was the least effective. No signs of aPDT damage to the bladder lining were detected. This procedure to treat urinary tract infections without antibiotics by using already approved pharmaceutical substances (MB and KI) may have clinical applicability, either initially as a stand-alone therapy, or as an adjunct to antibiotic therapy by a rapid and substantial reduction of the bacterial burden.


Methylene Blue/administration & dosage , Potassium Iodide/administration & dosage , Urinary Tract Infections/drug therapy , Uropathogenic Escherichia coli/drug effects , Animals , Anti-Infective Agents/administration & dosage , Disease Models, Animal , Female , Humans , Methylene Blue/chemistry , Photochemotherapy , Photosensitizing Agents/administration & dosage , Potassium Iodide/chemistry , Rats , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/pathogenicity
12.
Cancer Immunol Res ; 6(5): 539-551, 2018 05.
Article En | MEDLINE | ID: mdl-29511032

AMD3100 (plerixafor), a CXCR4 antagonist, has been demonstrated to suppress tumor growth and modulate intratumoral T-cell trafficking. However, the effect of AMD3100 on immunomodulation remains elusive. Here, we explored immunomodulation and antitumor efficacy of AMD3100 in combination with a previously developed mesothelin-targeted, immune-activating fusion protein, VIC-008, in two syngeneic, orthotopic models of malignant mesothelioma in immunocompetent mice. We showed that combination therapy significantly suppressed tumor growth and prolonged animal survival in two mouse models. Tumor control and survival benefit were associated with enhanced antitumor immunity. VIC-008 augmented mesothelin-specific CD8+ T-cell responses in the spleen and lymph nodes and facilitated intratumoral lymphocytic infiltration. However, VIC-008 treatment was associated with increased programmed cell death protein-1 (PD-1) expression on intratumoral CD8+ T cells, likely due to high CXCL12 in the tumor microenvironment. AMD3100 alone and in combination with VIC-008 modulated immunosuppression in tumors and the immune system through suppression of PD-1 expression on CD8+ T cells and conversion of regulatory T cells (Tregs) into CD4+CD25-Foxp3+IL2+CD40L+ helper-like cells. In mechanistic studies, we demonstrated that AMD3100-driven Treg reprogramming required T cell receptor (TCR) activation and was associated with loss of PTEN due to oxidative inactivation. The combination of VIC-008 augmentation of tumor-specific CD8+ T-cell responses with AMD3100 abrogation of immunosuppression conferred significant benefits for tumor control and animal survival. These data provide new mechanistic insight into AMD3100-mediated immunomodulation and highlight the enhanced antitumor effect of AMD3100 in combination with a tumor antigen-targeted therapy in mouse malignant mesothelioma, which could be clinically relevant to patients with this difficult-to-treat disease. Cancer Immunol Res; 6(5); 539-51. ©2018 AACR.


Antigens, Bacterial/immunology , Cancer Vaccines/therapeutic use , GPI-Linked Proteins/immunology , HSP70 Heat-Shock Proteins/immunology , Heterocyclic Compounds/pharmacology , Immunomodulation/drug effects , Mesothelioma/therapy , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/therapeutic use , Benzylamines , CHO Cells , Cancer Vaccines/immunology , Cell Line, Tumor , Combined Modality Therapy , Cricetinae , Cricetulus , Cyclams , Drug Synergism , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/therapeutic use , Heterocyclic Compounds/administration & dosage , Mesothelin , Mesothelioma/immunology , Mesothelioma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use
13.
J Occup Environ Med ; 58(12): 1159-1166, 2016 12.
Article En | MEDLINE | ID: mdl-27930472

Lentiviral vectors (LVVs) are powerful genetic tools that are being used with greater frequency in biomedical laboratories and clinical trials. Adverse events reported from initial clinical studies provide a basis for risk assessment of occupational exposures, yet many questions remain about the potential harm that LVVs may cause. We review those risks and provide a framework for principal investigators, Institutional Biosafety Committees, and occupational health professionals to assess and communicate the risks of exposure to staff. We also provide recommendations to federal research and regulatory agencies for tracking LVV exposures to evaluate long-term outcomes. U.S. Food and Drug Administration approved antiviral drugs for HIV have theoretical benefits in LVV exposures, although evidence to support their use is currently limited. If treatment is appropriate, we recommend a 7-day treatment with an integrase inhibitor with or without a reverse transcriptase inhibitor within 72 hours of exposure.


Genetic Vectors/adverse effects , Health Personnel , Lentivirus , Occupational Exposure/adverse effects , Humans , Occupational Health , Risk Assessment
14.
Expert Rev Vaccines ; 14(3): 435-46, 2015 Mar.
Article En | MEDLINE | ID: mdl-25496347

Cancer vaccine development efforts have recently gained momentum, but most vaccines showing clinical impact in human trials tend to be based on technology approaches that are very costly and difficult to produce at scale. With the projected doubling of the incidence of cancer and its related cost of care in the U.S. over the next two decades, the widespread clinical use of such vaccines will prove difficult to justify. Heat shock protein-based vaccines have shown the potential to elicit clinically meaningful immunologic responses in cancer, but the predominant development approach - heat shock protein-peptide complexes derived from a patient's own tumor - face similar challenges of cost and scalability. New innovative modalities for deploying heat shock proteins in cancer vaccines may open the door to vaccines that can generate potent cytotoxic responses against multiple tumor targets and can be made in a cost-effective and scalable manner.


Antigens, Neoplasm/immunology , Bacterial Proteins/immunology , Cancer Vaccines/immunology , Cancer Vaccines/isolation & purification , HSP70 Heat-Shock Proteins/immunology , Recombinant Fusion Proteins/immunology , Antigens, Neoplasm/genetics , Bacterial Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Humans , Neoplasms/therapy , Recombinant Fusion Proteins/genetics , T-Lymphocytes, Cytotoxic/immunology
15.
Hum Vaccin Immunother ; 10(10): 3022-38, 2014.
Article En | MEDLINE | ID: mdl-25483693

Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.


Avidin/immunology , Bacterial Proteins/immunology , HSP70 Heat-Shock Proteins/immunology , Lassa Fever/immunology , Lassa Fever/prevention & control , Viral Vaccines/immunology , Animals , Avidin/therapeutic use , Bacterial Proteins/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Communicable Diseases, Emerging/prevention & control , Female , HLA-DR3 Antigen/genetics , HSP70 Heat-Shock Proteins/therapeutic use , Influenza A Virus, H1N1 Subtype/immunology , Interferon-gamma/immunology , Lassa virus/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mycobacterium tuberculosis/immunology , Ovalbumin/immunology , Protein Engineering , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , Viral Vaccines/therapeutic use
17.
Clin Hemorheol Microcirc ; 53(4): 349-56, 2013.
Article En | MEDLINE | ID: mdl-22596230

OBJECTIVE: We have studied dense erythrocytes separated on Arabinogalactan (Stractan) ultracentrifuged gradients in flame-burned patients and in normal individuals. In each case, the percentage of erythrocytes in the densest layers was increased when compared to age and sex matched controls. METHODS AND RESULTS: Using an in vitro system, we showed that as human whole blood is warmed to 48.6°C, the number of dense erythrocytes increases. In addition, the reduced glutathionine (GSH) content of the densest red blood cells is decreased compared to those in lighter fractions on the same gradient or to dense erythrocytes separated from blood incubated at room temperature. These dense red cells were largely composed of spherocytes and spheroechynocytes, two forms of erythrocytes which have been shown by others to have markedly abnormal flow characteristics in vitro. CONCLUSIONS: We have demonstrated that in vivo dense erythrocytes can be generated in the setting of flame burns. Thus, the underlying reason may be oxidant injury as represented by the reduced level of GSH that we found in association with the generation of dense erythrocytes.


Burns/blood , Erythrocytes/pathology , Glutathione/blood , Aged , Aged, 80 and over , Burns/complications , Erythrocyte Count , Female , Humans , Male , Middle Aged
18.
Hum Vaccin Immunother ; 8(7): 1010-2, 2012 Jul.
Article En | MEDLINE | ID: mdl-22777091

Emerging and re-emerging infectious diseases represent a major challenge to vaccine development since it involves two seemingly contradictory requirements. Rapid and flexible vaccine generation while using technologies and processes that can facilitate accelerated regulatory review. Development in the "-omics" in combination with advances in vaccinology offer novel opportunities to meet these requirements. Here we describe how a consortium of five different organizations from academia and industry is addressing these challenges. This novel approach has the potential to become the new standard in vaccine development allowing timely deployment to avert potential pandemics.


Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Drug Approval , Drug Discovery/trends , Vaccines/immunology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Humans
19.
PLoS One ; 5(10): e13776, 2010 Oct 29.
Article En | MEDLINE | ID: mdl-21048884

BACKGROUND: Development of a potent vaccine adjuvant without introduction of any side effects remains an unmet challenge in the field of the vaccine research. METHODOLOGY/PRINCIPAL FINDINGS: We found that laser at a specific setting increased the motility of antigen presenting cells (APCs) and immune responses, with few local or systemic side effects. This laser vaccine adjuvant (LVA) effect was induced by brief illumination of a small area of the skin or muscle with a nondestructive, 532 nm green laser prior to intradermal (i.d.) or intramuscular (i.m.) administration of vaccines at the site of laser illumination. The pre-illumination accelerated the motility of APCs as shown by intravital confocal microscopy, leading to sufficient antigen (Ag)-uptake at the site of vaccine injection and transportation of the Ag-captured APCs to the draining lymph nodes. As a result, the number of Ag(+) dendritic cells (DCs) in draining lymph nodes was significantly higher in both the 1° and 2° draining lymph nodes in the presence than in the absence of LVA. Laser-mediated increases in the motility and lymphatic transportation of APCs augmented significantly humoral immune responses directed against a model vaccine ovalbumin (OVA) or influenza vaccine i.d. injected in both primary and booster vaccinations as compared to the vaccine itself. Strikingly, when the laser was delivered by a hair-like diffusing optical fiber into muscle, laser illumination greatly boosted not only humoral but also cell-mediated immune responses provoked by i.m. immunization with OVA relative to OVA alone. CONCLUSION/SIGNIFICANCE: The results demonstrate the ability of this safe LVA to augment both humoral and cell-mediated immune responses. In comparison with all current vaccine adjuvants that are either chemical compounds or biological agents, LVA is novel in both its form and mechanism; it is risk-free and has distinct advantages over traditional vaccine adjuvants.


Adjuvants, Immunologic/administration & dosage , Antigen-Presenting Cells/cytology , Cell Movement , Animals , Base Sequence , DNA Primers , Lasers , Male , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Polymerase Chain Reaction
20.
Clin Infect Dis ; 46(3): 370-6, 2008 Feb 01.
Article En | MEDLINE | ID: mdl-18181735

BACKGROUND: Human babesiosis is a tickborne malaria-like illness that generally resolves without complication after administration of atovaquone and azithromycin or clindamycin and quinine. Although patients experiencing babesiosis that is unresponsive to standard antimicrobial therapy have been described, the pathogenesis, clinical course, and optimal treatment regimen of such cases remain uncertain. METHODS: We compared the immunologic status, clinical course, and treatment of 14 case patients who experienced morbidity or death after persistence of Babesia microti infection, despite repeated courses of antibabesial treatment, with those of 46 control subjects whose infection resolved after a single course of standard therapy. This retrospective case-control study was performed in southern New England, New York, and Wisconsin. RESULTS: All case patients were immunosuppressed at the time of acute babesiosis, compared with <10% of the control subjects. Most case patients experienced B cell lymphoma and were asplenic or had received rituximab before babesial illness. The case patients were more likely than control subjects to experience complications, and 3 died. Resolution of persistent infection occurred in 11 patients after 2-10 courses of therapy, including administration of a final antimicrobial regimen for at least 2 weeks after babesia were no longer seen on blood smear. CONCLUSIONS: Immunocompromised people who are infected by B. microti are at risk of persistent relapsing illness. Such patients generally require antibabesial treatment for >or=6 weeks to achieve cure, including 2 weeks after parasites are no longer detected on blood smear.


Babesiosis/immunology , Adult , Aged , Aged, 80 and over , Animals , Antiprotozoal Agents/therapeutic use , Babesiosis/drug therapy , Babesiosis/parasitology , Case-Control Studies , Drug Therapy, Combination , Female , Humans , Immunocompromised Host , Male , Middle Aged , Recurrence , Retrospective Studies , Zoonoses/parasitology
...