Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 38(4): 487-501, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30684023

RESUMEN

KEY MESSAGE: The analysis of 93 mutant alleles in 18 genes demonstrated that CRISPR-Cas9 is a robust tool for targeted mutagenesis in maize, permitting efficient generation of single and multiple knockouts. CRISPR-Cas9 technology is a simple and efficient tool for targeted mutagenesis of the genome. It has been implemented in many plant species, including crops such as maize. Here we report single- and multiple-gene mutagenesis via stably transformed maize plants. Two different CRISPR-Cas9 vectors were used allowing the expression of multiple guide RNAs and different strategies to knockout either independent or paralogous genes. A total of 12 plasmids, representing 28 different single guide RNAs (sgRNAs), were generated to target 20 genes. For 18 of these genes, at least one mutant allele was obtained, while two genes were recalcitrant to sequence editing. 19% (16/83) of mutant plants showed biallelic mutations. Small insertions or deletions of less than ten nucleotides were most frequently observed, regardless of whether the gene was targeted by one or more sgRNAs. Deletions of defined regions located between the target sites of two guide RNAs were also reported although the exact deletion size was variable. Double and triple mutants were created in a single step, which is especially valuable for functional analysis of genes with strong genetic linkage. Off-target effects were theoretically limited due to rigorous sgRNA design and random experimental checks at three potential off-target sites did not reveal any editing. Sanger chromatograms allowed to unambiguously class the primary transformants; the majority (85%) were fully edited plants transmitting systematically all detected mutations to the next generation, generally following Mendelian segregation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes/métodos , Zea mays/genética , Edición Génica , Genoma de Planta/genética , Mutagénesis/genética
2.
EMBO J ; 36(6): 707-717, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28228439

RESUMEN

Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene NOT LIKE DAD (NLD) coding for a patatin-like phospholipase A. In all surveyed inducer lines, NLD carries a 4-bp insertion leading to a predicted truncated protein. This frameshift mutation is responsible for haploid induction because complementation with wild-type NLD abolishes the haploid induction capacity. Activity of the NLD promoter is restricted to mature pollen and pollen tube. The translational NLD::citrine fusion protein likely localizes to the sperm cell plasma membrane. In Arabidopsis roots, the truncated protein is no longer localized to the plasma membrane, contrary to the wild-type NLD protein. In conclusion, an intact pollen-specific phospholipase is required for successful sexual reproduction and its targeted disruption may allow establishing powerful haploid breeding tools in numerous crops.


Asunto(s)
Óvulo Vegetal/crecimiento & desarrollo , Fosfolipasas/metabolismo , Proteínas de Plantas/metabolismo , Polen/enzimología , Reproducción , Zea mays/fisiología , Regulación de la Expresión Génica de las Plantas , Fosfolipasas/deficiencia , Zea mays/enzimología
3.
Nat Genet ; 47(12): 1489-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523777

RESUMEN

Carbohydrate import into seeds directly determines seed size and must have been increased through domestication. However, evidence of the domestication of sugar translocation and the identities of seed-filling transporters have been elusive. Maize ZmSWEET4c, as opposed to its sucrose-transporting homologs, mediates transepithelial hexose transport across the basal endosperm transfer layer (BETL), the entry point of nutrients into the seed, and shows signatures indicative of selection during domestication. Mutants of both maize ZmSWEET4c and its rice ortholog OsSWEET4 are defective in seed filling, indicating that a lack of hexose transport at the BETL impairs further transfer of sugars imported from the maternal phloem. In both maize and rice, SWEET4 was likely recruited during domestication to enhance sugar import into the endosperm.


Asunto(s)
Productos Agrícolas/genética , Endospermo/metabolismo , Hexosas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Zea mays/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Humanos , Mutación/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Zea mays/crecimiento & desarrollo
4.
Plant J ; 84(3): 574-86, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26361885

RESUMEN

In angiosperm seeds the embryo is embedded within the endosperm, which is in turn enveloped by the seed coat, making inter-compartmental communication essential for coordinated seed growth. In this context the basic helix-loop-helix domain transcription factor AtZHOUPI (AtZOU) fulfils a key role in both the lysis of the transient endosperm and in embryo cuticle formation in Arabidopsis thaliana. In maize (Zea mays), a cereal with a persistent endosperm, a single gene, ZmZOU, falls into the same phylogenetic clade as AtZOU. Its expression is limited to the endosperm where it peaks during the filling stage. In ZmZOU-RNA interference knock-down lines embryo size is slightly reduced and the embryonic suspensor and the adjacent embryo surrounding region show retarded breakdown. Ectopic expression of ZmZOU reduces stomatal number, possibly due to inappropriate protein interactions. ZmZOU forms functional heterodimers with AtICE/AtSCREAM and the closely related maize proteins ZmICEb and ZmICEc, but its interaction is more efficient with the ZmICEa protein, which shows sequence divergence and only has close homologues in other monocotyledonous species. Consistent with the observation that these complexes can trans-activate target gene promoters from Arabidopsis, ZmZOU partially complements the Atzou-4 mutant. However, structural, trans-activation and gene expression data support the hypothesis that ZmZOU and ZmICEa may have coevolved to form a functional complex unique to monocot seeds. This divergence may explain the reduced functionality of ZmZOU in Arabidopsis, and reflect functional specificities which are unique to the monocotyledon lineage.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Mutación , Proteínas de Plantas/genética , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Multimerización de Proteína , Semillas/genética , Zea mays/genética
5.
J Exp Bot ; 66(19): 5753-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093144

RESUMEN

The fdl1-1 mutation, caused by an Enhancer/Suppressor mutator (En/Spm) element insertion located in the third exon of the gene, identifies a novel gene encoding ZmMYB94, a transcription factor of the R2R3-MYB subfamily. The fdl1 gene was isolated through co-segregation analysis, whereas proof of gene identity was obtained using an RNAi strategy that conferred less severe, but clearly recognizable specific mutant traits on seedlings. Fdl1 is involved in the regulation of cuticle deposition in young seedlings as well as in the establishment of a regular pattern of epicuticular wax deposition on the epidermis of young leaves. Lack of Fdl1 action also correlates with developmental defects, such as delayed germination and seedling growth, abnormal coleoptile opening and presence of curly leaves showing areas of fusion between the coleoptile and the first leaf or between the first and the second leaf. The expression profile of ZmMYB94 mRNA-determined by quantitative RT-PCR-overlaps the pattern of mutant phenotypic expression and is confined to a narrow developmental window. High expression was observed in the embryo, in the seedling coleoptile and in the first two leaves, whereas RNA level, as well as phenotypic defects, decreases at the third leaf stage. Interestingly several of the Arabidopsis MYB genes most closely related to ZmMYB94 are also involved in the activation of cuticular wax biosynthesis, suggesting deep conservation of regulatory processes related to cuticular wax deposition between monocots and dicots.


Asunto(s)
Proteínas de Plantas/genética , Factores de Transcripción/genética , Zea mays/genética , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Mutación , Organogénesis de las Plantas , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Zea mays/embriología , Zea mays/metabolismo
6.
Plant Sci ; 236: 116-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26025525

RESUMEN

In the dicot Arabidopsis thaliana, the B3 transcription factors, ABA-INSENSITIVE 3 (ABI3), FUSCA 3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) are key regulators of seed maturation. This raises the question of the role of ABI3/FUS3/LEC2 (AFL) proteins in cereals, where not only the embryo but also the persistent endosperm accumulates reserve substances. Among the five ZmAFL genes identified in the maize genome, ZmAFL2 and ZmAFL3/ZmVp1 closely resemble FUS3 and ABI3, respectively, in terms of their sequences, domain structure and gene activity profiles. Of the three genes that fall into the LEC2 phylogenetic sub-clade, ZmAFL5 and ZmAFL6 have constitutive gene activity, whereas ZmAFL4, like LEC2, has preferential gene activity in pollen and seed, although its seed gene activity is restricted to the endosperm during reserve accumulation. Knock down of ZmAFL4 gene activity perturbs carbon metabolism and reduces starch content in the developing endosperm at 20 DAP. ZmAFL4 and ZmAFL3/ZmVp1 trans-activate a maize oleosin promoter in a heterologous moss system. In conclusion our results suggest, based on gene activity profiles, that the functions of FUS3 and ABI3 could be conserved between dicot and monocot species. In contrast, LEC2 function may have partially diverged in cereals where our findings provide first evidence of the specialization of ZmAFL4 for roles in the endosperm.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Zea mays/genética , Secuencia de Aminoácidos , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Zea mays/metabolismo
7.
J Exp Bot ; 63(16): 5843-57, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22945943

RESUMEN

The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a MuDR insertion in the first exon of PPR8522. Independent evidence that disruption of PPR8522 caused the emb phenotype was provided by fine mapping to a region of 116kb containing no other gene than PPR8522 and complementation of the emb8522 mutant by a PPR8522 cDNA. The deduced PPR8522 amino acid sequence of 832 amino acids contains 10 PPR repeats and a chloroplast target peptide, the function of which was experimentally demonstrated by transient expression in Nicotiana benthamiana. Whereas mutant endosperm is apparently normal, mutant embryos deviate from normal development as early as 3 days after pollination, are reduced in size, exhibit more or less severe morphological aberrations depending on the genetic background, and generally do not germinate. The emb8522 mutation is the first to associate the loss of a PPR gene with an embryo-lethal phenotype in maize. Analyses of mutant plantlets generated by embryo-rescue experiments indicate that emb8522 also affects vegetative plant growth and chloroplast development. The loss of chloroplast transcription dependent on plastid-encoded RNA polymerase is the likely cause for the lack of an organized thylakoid network and an albino, seedling-lethal phenotype.


Asunto(s)
Cloroplastos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Secuencia de Aminoácidos , Cloroplastos/química , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Zea mays/embriología , Zea mays/genética
8.
PLoS Genet ; 8(7): e1002799, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844245

RESUMEN

In numerous species, the formation of meiotic crossovers is largely under the control of a group of proteins known as ZMM. Here, we identified a new ZMM protein, HEI10, a RING finger-containing protein that is well conserved among species. We show that HEI10 is structurally and functionally related to the yeast Zip3 ZMM and that it is absolutely required for class I crossover (CO) formation in Arabidopsis thaliana. Furthermore, we show that it is present as numerous foci on the chromosome axes and the synaptonemal complex central element until pachytene. Then, from pachytene to diakinesis, HEI10 is retained at a limited number of sites that correspond to class I COs, where it co-localises with MLH1. Assuming that HEI10 early staining represents an early selection of recombination intermediates to be channelled into the ZMM pathway, HEI10 would therefore draw a continuity between early chosen recombination intermediates and final class I COs.


Asunto(s)
Arabidopsis/genética , Intercambio Genético , Miosis/genética , Homología de Secuencia de Aminoácido , Complejo Sinaptonémico/genética , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas de las Plantas/genética , Fertilidad/genética , Recombinación Homóloga , Datos de Secuencia Molecular , Homólogo 1 de la Proteína MutL , Mutación , Dominios RING Finger/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Levaduras/genética
9.
Plant Cell ; 24(2): 676-91, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319053

RESUMEN

RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.


Asunto(s)
Citocromos b/genética , Proteínas Mitocondriales/genética , NADH Deshidrogenasa/genética , Proteínas de Plantas/metabolismo , Edición de ARN , Zea mays/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Cloroplastos/enzimología , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Transmisión , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Oxidorreductasas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Zea mays/metabolismo
10.
Plant Physiol ; 156(2): 674-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21474435

RESUMEN

WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle. Transcriptomic experiments identified 18 putative target genes of this transcription factor, 12 of which contain in their upstream regions an AW box, the cis-element bound by AtWRI1. In addition to functions related to late glycolysis and fatty acid biosynthesis in plastids, the target genes also have functions related to coenzyme A biosynthesis in mitochondria and the production of glycerol backbones for triacylglycerol biosynthesis in the cytoplasm. Interestingly, the higher seed oil content in ZmWri1a overexpression lines is not accompanied by a reduction in starch, thus opening possibilities for the use of the transgenic maize lines in breeding programs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes Duplicados/genética , Genes de Plantas/genética , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/genética , Zea mays/genética , Arabidopsis/genética , Secuencia de Bases , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Glucólisis/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Filogenia , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Triglicéridos/biosíntesis
11.
PLoS Genet ; 5(9): e1000654, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19763177

RESUMEN

Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Meiosis/genética , Recombinación Genética , Alelos , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Emparejamiento Cromosómico/genética , Cromosomas de las Plantas/genética , Ciclinas/química , Ciclinas/metabolismo , Roturas del ADN de Doble Cadena , Exones/genética , Genes de Plantas , Intrones/genética , Datos de Secuencia Molecular , Mutación/genética , Transporte de Proteínas , Recombinasas/metabolismo , Alineación de Secuencia
12.
PLoS Genet ; 4(12): e1000309, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19096505

RESUMEN

In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIalpha/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair -- that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Meiosis , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cromátides/metabolismo , Intercambio Genético , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fenotipo , Recombinación Genética , Alineación de Secuencia
13.
EMBO J ; 26(18): 4126-37, 2007 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-17762870

RESUMEN

The initiation of meiotic recombination by the formation of DNA double-strand breaks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation, but, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we have isolated a new gene, AtPRD1, whose mutation affects meiosis in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early recombination markers (e.g., DMC1 foci) are absent, but meiosis progresses until achiasmatic univalents are formed. Besides, Atprd1 mutants suppress DSB repair defects of a large range of meiotic mutants, showing that AtPRD1 is involved in meiotic recombination and is required for meiotic DSB formation. Furthermore, we showed that AtPRD1 and AtSPO11-1 interact in a yeast two-hybrid assay, suggesting that AtPRD1 could be a partner of AtSPO11-1. Moreover, our study reveals similarity between AtPRD1 and the mammalian protein Mei1, suggesting that AtPRD1 could be a Mei1 functional homologue.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Roturas del ADN de Doble Cadena , Meiosis , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Unión al ADN/metabolismo , Fertilidad , Indoles , Datos de Secuencia Molecular , Mutación/genética , Polen/citología , Unión Proteica , Recombinación Genética/genética , Saccharomyces cerevisiae/citología , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos
14.
PLoS Genet ; 3(5): e83, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17530928

RESUMEN

In budding yeast meiosis, the formation of class I interference-sensitive crossovers requires the ZMM proteins. These ZMM proteins are essential in forming a mature synaptonemal complex, and a subset of these (Zip2, Zip3, and Zip4) has been proposed to compose the core of synapsis initiation complexes (SICs). Zip4/Spo22 functions with Zip2 to promote polymerization of Zip1 along chromosomes, making it a crucial SIC component. In higher eukaryotes, synapsis and recombination have often been correlated, but it is totally unknown how these two processes are linked. In this study, we present the characterization of a higher eukaryote SIC component homologue: Arabidopsis AtZIP4. We show that mutations in AtZIP4 belong to the same epistasis group as Atmsh4 and eliminate approximately 85% of crossovers (COs). Furthermore, genetic analyses on two adjacent intervals of Chromosome I established that the remaining COs in Atzip4 do not show interference. Lastly, immunolocalization studies showed that polymerization of the central element of the synaptonemal complex is not affected in Atzip4 background, even if it may proceed from fewer sites compared to wild type. These results reveal that Zip4 function in class I CO formation is conserved from budding yeast to Arabidopsis. On the other hand, and contrary to the situation in yeast, mutation in AtZIP4 does not prevent synapsis, showing that both aspects of the Zip4 function (i.e., class I CO maturation and synapsis) can be uncoupled.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Transporte de Catión/metabolismo , Emparejamiento Cromosómico/fisiología , Intercambio Genético , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Emparejamiento Cromosómico/genética , Cromosomas de las Plantas/genética , Proteínas de Unión al ADN/metabolismo , Exones/genética , Datos de Secuencia Molecular , Proteínas Mutantes/aislamiento & purificación , Mutación/genética , Fenotipo , Polen/citología , Polen/metabolismo , Transporte de Proteínas
15.
J Cell Sci ; 118(Pt 20): 4621-32, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16176934

RESUMEN

The success of the first meiotic division relies (among other factors) on the formation of bivalents between homologous chromosomes, the monopolar orientation of the sister kinetochores at metaphase I and the maintenance of centromeric cohesion until the onset of anaphase II. The meiotic cohesin subunit, Rec8 has been reported to be one of the key players in these processes, but its precise role in kinetochore orientation is still under debate. By contrast, much less is known about the other non-SMC cohesin subunit, Scc3. We report the identification and the characterisation of AtSCC3, the sole Arabidopsis homologue of Scc3. The detection of AtSCC3 in mitotic cells, the embryo lethality of a null allele Atscc3-2, and the mitotic defects of the weak allele Atscc3-1 suggest that AtSCC3 is required for mitosis. AtSCC3 was also detected in meiotic nuclei as early as interphase, and bound to the chromosome axis from early leptotene through to anaphase I. We show here that both AtREC8 and AtSCC3 are necessary not only to maintain centromere cohesion at anaphase I, but also for the monopolar orientation of the kinetochores during the first meiotic division. We also found that AtREC8 is involved in chromosome axis formation in an AtSPO11-1-independent manner. Finally, we provide evidence for a role of AtSPO11-1 in the stability of the cohesin complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Cinetocoros/metabolismo , Meiosis , Anafase , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona , Cromosomas de las Plantas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Genoma de Planta , Mutación/genética , Proteínas Nucleares/metabolismo , Fenotipo , Transporte de Proteínas , Recombinasa Rad51/metabolismo , Recombinación Genética , Cohesinas
16.
Plant J ; 35(4): 465-75, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12904209

RESUMEN

Arabidopsis thaliana MEI1 was first described as a gene involved in male meiosis, encoding a short protein showing homology with a human acrosin-trypsin inhibitor. We have isolated a new allele of mei1, and shown that in both mutants male and female meiosis are affected. In both reproductive pathways, meiosis proceeds while chromosomes become fragmented, resulting in aberrant meiotic products and in a strongly reduced fertility. We have shown that the gene mutated in mei1 mutants actually encodes a protein of 972 amino acids that contains five BRCA1 C-terminus (BRCT) domains and is similar to proteins involved in the response to DNA damage and replication blocks in eukaryotes. During meiosis, recombination is initiated by the formation of DNA double strand breaks (DSBs) induced by the protein SPO11. We analysed meiotic chromosome behaviour of the mei1 mutant in a spo11 mutant background and proved that the meiotic fragmentation observed in mei1 mutants was not the consequence of defects in the repair of meiotic DSBs induced by SPO11. We also analysed the effect of mei1 on the mitotic cell cycle but could not detect any sensitivity of mei1 seedlings to DNA-damaging agents like gamma-rays or UV. Therefore, MEI1 is a BRCT-domain-containing protein that could be specific to the meiotic cell cycle and that plays a crucial role in some DNA repair events independent of SPO11 DSB recombination repair.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Daño del ADN , Reparación del ADN , Meiosis/fisiología , Alelos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteína BRCA1/química , Proteínas Portadoras/química , ADN de Plantas/fisiología , Proteínas de Unión al ADN , Fertilidad , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares , Fenotipo , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
17.
J Neurochem ; 81(6): 1328-37, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12068080

RESUMEN

Long-chain polyunsaturated (n-3) fatty acids have been reported to influence the efficiency of membrane receptors, transporters and enzymes. Because the brain is particularly rich in docosahexaenoic acid (DHA, 22:6 n-3), the present study addresses the question of whether the 22:6 n-3 fatty acid deficiency induces disorder in regulation of energy metabolism in the CNS. Three brain regions that share a high rate of energy metabolism were studied: fronto-parietal cortex, hippocampus and suprachiasmatic nucleus. The effect of the diet deficient in n-3 fatty acids resulted in a 30-50% decrease in DHA in membrane phospholipids. Moreover, a 30% decrease in glucose uptake and a 20-40% decrease in cytochrome oxidase activity were observed in the three brain regions. The n-3 deficient diet also altered the immunoreactivity of glucose transporters, namely GLUT1 in endothelial cells and GLUT3 in neurones. In n-3 fatty acid deficient rats, GLUT1-immunoreactivity readily detectable in microvessels became sparse, whereas the number of GLUT3 immunoreactive neurones was increased. However, western blot analysis showed no significant difference in GLUT1 and GLUT3 protein levels between rats deficient in n-3 fatty acids and control rats. The present results suggest that changes in energy metabolism induced by n-3 deficiency could result from functional alteration in glucose transporters.


Asunto(s)
Encéfalo/metabolismo , Ácidos Grasos Omega-3/fisiología , Glucosa/metabolismo , Proteínas del Tejido Nervioso , Ácido alfa-Linolénico/deficiencia , Animales , Transporte Biológico , Barrera Hematoencefálica/fisiología , Dieta , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 3 , Proteínas de Transporte de Monosacáridos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación Oxidativa , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...