Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 57
1.
Commun Chem ; 7(1): 68, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38555377

Bulk cobalt does not react with water at room temperature, but cobalt nanometals could yield corrosion at ambient conditions. Insights into the cobalt cluster reactions with water and oxygen enable us to better understand the interface reactivity of such nanometals. Here we report a comprehensive study on the gas-phase reactions of Con±/0 clusters with water and oxygen. All these Con±/0 clusters were found to react with oxygen, but only anionic cobalt clusters give rise to water dissociation whereas the cationic and neutral ones are limited to water adsorption. We elucidate the influences of charge states, bonding modes and dehydrogenation mechanism of water on typical cobalt clusters. It is unveiled that the additional electron of anionic Con- clusters is not beneficial to H2O adsorption, but allows for thermodynamics- and kinetics-favourable H atom transfer and dehydrogenation reactions. Apart from the charge effect, size effect and spin effect play a subtle role in the reaction process. The synergy of multiple metal sites in Con- clusters reduces the energy barrier of the rate-limiting step enabling hydrogen release. This finding of water dissociation on cobalt clusters put forward new connotations on the activity series of metals, providing new insights into the corrosion mechanism of cobalt nanometals.

2.
Phys Chem Chem Phys ; 26(12): 9586-9592, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38465400

The reactivity of Nbn+ (1 ≤ n ≤ 21) clusters with B2H6 is studied by using a self-developed multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). The Nbn+ clusters were generated by a magnetron sputtering source and reacted with the B2H6 gas under fully thermalized conditions in the downstream flow tube where the reaction time was accurately controlled and adjustable. The complete and partial dehydrogenation products NbnB1-4+ and NbnB1-4H1,2,4+ were detected, indicative of the removal of H2 and likely BHx moieties. Interestingly, these NbnB1-4+ and NbnB1-4H1,2,4+ products are limited to 3 ≤ n ≤ 6, suggesting that the small Nbn+ clusters are relatively more reactive than the larger Nbn>6+ clusters under the same conditions. By varying the B2H6 gas concentrations and the reactant doses introduced into the flow tube, and by changing the reaction time, we performed a detailed analysis of the reaction dynamics in combination with the DFT-calculated thermodynamics. It is demonstrated that the lack of cooperative active sites on the Nb1+ cations accounts for the weakened dehydrogenation efficiency. Nb2+ forms partial dehydrogenation products at a faster rate. In contrast, the Nbn>6+ clusters are subject to more flexible vibrational relaxation which disperse the energy gain of B2H6-adsorption and thus are unable to overcome the energy barriers for subsequent hydrogen atom transfer and H2 release.

3.
J Am Chem Soc ; 146(13): 9302-9310, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38506150

Tailoring materials with prescribed properties and regular structures is a critical and challenging research topic. Early transition metals were found to form supermagic M8C12 metallocarbohedrenes (Met-Cars); however, stable metal carbides are not limited to this common stoichiometry. Utilizing self-developed deep-ultraviolet laser ionization mass spectrometry, here, we report a strategy to generate new titanium carbides by reacting pure Tin clusters with acetylene. Interestingly, two products corresponding to Ti17C2 and Ti19C10 exhibit superior abundances in addition to the Ti8C12 Met-Cars. Using global-minimum search, the structures of Ti17C2 and Ti19C10 are determined to be an ellipsoidal D4d and a rod-shaped D5h geometry, respectively, both with carbon-capped Ti4C moieties and superatomic features. We illustrate the electronic structures and bonding nature in these carbon-doped superatoms concerning their enhanced stability and local aromaticity, shedding light on a new class of metal-carbide nanomaterials with atomic precision.

4.
J Phys Chem A ; 128(7): 1274-1279, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38334079

Iodomethane and bromomethane (CH3I/CH3Br) are common chemicals, but their chemistry on nanometals is not fully understood. Here, we analyze the reactivity of Rhn+ (n = 3-30) clusters with halomethanes and unveil the spin effect and concentration dependence in the C-H and C-X bond activation. It is found that the reactions under halomethane-rich conditions differ from those under metal-rich conditions. Both CH3I and CH3Br undergo similar dehydrogenation on the Rhn+ clusters in the presence of small quantity reactants; however, different reactions are observed in the presence of sufficient CH3I/CH3Br, showing dominant Rh(CH3Br)x+ (x = 1-4) products but a series of RhnCxHyIz+ species (x = 1-4, y = 1-12, and z = 1-5) pertaining to H2, HI, or CH4 removal. Density functional theory calculations reveal that the dehydrogenation and demethanation of CH3Br are relatively less exothermic and will be deactivated by sufficient gas collisions if helium cooling takes away energy immediately; instead, the successive adsorption of CH3Br gives rise to a series of Rh(CH3Br)x+ species with accidental C-Br bond dissociation.

5.
J Phys Chem Lett ; 15(7): 1856-1865, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38335129

Metal clusters with tunable magnetism and chemical activity are ideal models to study magnetic order changes from microstructures to macroscopic substances, to understand the spin effect in diverse catalytic reactions, and to create information carriers of qubits in quantum computation. Precise preparation, reaction, and characterization of magnetic clusters provide a platform to understand spin-exchange interactions and geometrical/electronic structure-property relationships; thus, they are beneficial for the rational design and development of new cluster-genetic materials and spintronics microdevices. Advances in this field have discovered some high-spin magnetic clusters and superatoms, expanding the understanding of magnetism, aromaticity, cluster stability, and electron delocalization. Herein we present a perspective of the experimental and theoretical progress regarding magnetic clusters and superatoms, with the expectation of stimulating more research interest in this field.

6.
J Am Chem Soc ; 145(49): 26908-26914, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38041728

Ferromagnets constructed from nanometals of atomic precision are important for innovative advances in information storage, energy conversion, and spintronic microdevices. Considerable success has been achieved in designing molecular magnets, which, however, are challenging in preparation and may suffer from drawbacks on the incompatibility of high stability and strong ferromagnetism. Utilizing a state-of-the-art self-developed mass spectrometer and a homemade laser vaporization source, we have achieved a highly efficient preparation of pure iron clusters, and here, we report the finding of a strongly ferromagnetic metal-carbon cluster, Fe12C12-, simply by reacting the Fen- clusters with acetylene in proper conditions. The unique stability of this ferromagnetic Fe12C12- cluster is rooted in a plumb-bob structure pertaining to Jahn-Teller distortion. We classify Fe12C12- as a new member of metallo-carbohedrenes and elucidate its structural stability mechanism as well as its soft-landing deposition and magnetization measurements, providing promise for the exploration of potential applications.

7.
Entropy (Basel) ; 25(11)2023 Nov 15.
Article En | MEDLINE | ID: mdl-37998236

Neurostimulation can be used to modulate brain dynamics of patients with neuropsychiatric disorders to make abnormal neural oscillations restore to normal. The control schemes proposed on the bases of neural computational models can predict the mechanism of neural oscillations induced by neurostimulation, and then make clinical decisions that are suitable for the patient's condition to ensure better treatment outcomes. The present work proposes two closed-loop control schemes based on the improved incremental proportional integral derivative (PID) algorithms to modulate brain dynamics simulated by Wendling-type coupled neural mass models. The introduction of the genetic algorithm (GA) in traditional incremental PID algorithm aims to overcome the disadvantage that the selection of control parameters depends on the designer's experience, so as to ensure control accuracy. The introduction of the radial basis function (RBF) neural network aims to improve the dynamic performance and stability of the control scheme by adaptively adjusting control parameters. The simulation results show the high accuracy of the closed-loop control schemes based on GA-PID and GA-RBF-PID algorithms for modulation of brain dynamics, and also confirm the superiority of the scheme based on the GA-RBF-PID algorithm in terms of the dynamic performance and stability. This research of making hypotheses and predictions according to model data is expected to improve and perfect the equipment of early intervention and rehabilitation treatment for neuropsychiatric disorders in the biomedical engineering field.

8.
Sci Adv ; 9(33): eadi0214, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37585530

Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh­[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.

9.
Commun Chem ; 6(1): 149, 2023 Jul 13.
Article En | MEDLINE | ID: mdl-37443354

Isolated clusters are ideal systems for tailoring molecule-based magnets and investigating the evolution of magnetic order from microscopic to macroscopic regime. We have prepared pure Fen- (n = 7-31) clusters and observed their gas-collisional reactions with oxygen in a flow tube reactor. Interestingly, only the larger Fen- (n ≥ 15) clusters support the observation of O2-intake, while the smaller clusters Fen- (n = 7-14) are nearly nonreactive. What is more interesting is that Fe17O10- shows up with prominent abundance in the mass spectra indicative of its distinct inertness. In combination with DFT calculations, we unveil the stability of Fe17O10- within an interesting acordion-like structure and elucidate the spin accommodation in such a strongly ferromagnetic iron cluster oxide.

10.
Chemistry ; 29(51): e202300167, 2023 Sep 12.
Article En | MEDLINE | ID: mdl-37358027

We report a joint experimental and theoretical study on the stability and reactivity of Bin + (n=5-33) clusters. The alternating odd-even effect on the reaction rates of Bin + clusters with NO is observed, and Bi7 + finds the most inertness. First-principles calculation results reveal that the lowest energy structures of Bi6-9 + exhibit quasi-spherical geometry pertaining to the jellium shell model; however, the Bin + (n≥10) clusters adopt assembly structures. The prominent stability of Bi7 + is associated with its highly symmetric structure and superatomic states with a magic number of 34e closed shell. For the first time, we demonstrate that the unique s-p nonhybrid feature in bismuth rationalizes the stability of Bi6-9 + clusters within the jellium model, by filling the 6s electrons into the superatomic orbitals (forming "s-band"). Interestingly, the stability of 18e "s-band" coincides with the compact structure for Bin + at n≤9 but assembly structures for n≥10, showing an accommodation of the s electrons to the geometric structure. The atomic p-orbitals also allow to form superatomic orbitals at higher energy levels, contributing to the preferable structures of tridentate binding units. We illustrate the s-p nonhybrid nature accommodates the structure and superatomic states of bismuth clusters.

11.
J Phys Chem A ; 127(13): 2912-2920, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36976294

Well-resolved Nbn- clusters are produced and reacted with ethene and propene via a downstream flow tube reactor. Interestingly, the Nbn- clusters readily react with ethene and propene to form dehydrogenation products; however, Nb15- shows up in the mass spectra with prominent mass abundance indicating its inertness to react with olefins. For this cluster, we conduct photoelectron velocity map imaging (VMI) experiments and verify the stability of Nb15- within a highly symmetrical rhombic dodecahedron structure. Theoretical studies show that the stability of the Nb15- cluster is correlated with its superatomic nature pertaining to both geometric and electronic shell closures. Notably, the superatomic 1s orbital is dominated by the 5s electron of the central Nb atom, while the other superatomic orbitals are contributed by s-d hybridization, especially a remarkable contribution of s-dz2 hybridization. Apart from the closed shells, the highly symmetric geometry of Nb15- is associated with a regular polyhedral structure directed by all rhombus facets, embodying a magic number for body-centered dodecahedra, indicative of enhanced stability as a double magic cluster free of olefin adsorption.

13.
J Phys Chem Lett ; 13(41): 9711-9717, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36220259

We carried out a comprehensive study on the gas-phase reactions of Tan- (n = 5-27) with nitrogen using a customized reflection time-of-flight mass spectrometer coupled with a velocity map imaging apparatus (Re-TOFMS-VMI). Among the studied tantalum clusters, Ta10- exhibits prominent mass abundance indicative of its unique inertness. DFT calculation results revealed a D4d bipyramidal prolate structure of the most stable Ta10-, which was verified by photoelectron spectroscopy experiments. The calculations also unveiled that Ta10- has the largest HOMO-LUMO gap and second-order difference of binding energy among the studied clusters. This is associated with its well-organized superatomic orbitals, which consist of both 6s and 5d orbitals of tantalum atoms, allowing for splitting of superatomic 1D and 2P orbitals and an enlarged gap between the singly occupied molecular orbital (SOMO) and unoccupied ß counterpart, which brings forth stabilization energy pertaining to Jahn-Teller distortion. Also, the SOMO exhibits a united d-d π orbital pattern that embraces the central Ta8- moiety.

14.
Chemphyschem ; 23(17): e202200288, 2022 09 05.
Article En | MEDLINE | ID: mdl-35689533

We have performed a study on the accommodation of nitrogen doping toward superatomic states of transition metal clusters. By reacting cobalt clusters with N2 in the presence of plasma radiation, a large number of odd-nitrogen clusters were observed, typically Co3 N2m-1 + (m=1-5) and Co4 N2m-1 + (m=1-6) series, showing N≡N bond cleavage in the mild plasma atmosphere. Interestingly, the Co3 N7 + , Co4 N9 + , and Co5 N9 + clusters exhibit prominent mass abundances. First-principles calculation results elucidate the stability of the diverse cobalt nitride clusters and find unique stability of Co4 N9 + with a swallow-kite structure of which four coordinated N2 molecules causes a significantly enlarged HOMO-LUMO gap, while the single N atom doping gives rise to superatomic states of 1S2 1P3 ||1D0 . We reveal an efficient dinitrogen activation strategy by reacting multiple N2 molecules with cobalt clusters under a plasma atmosphere.


Cobalt , Nitrogen , Cobalt/chemistry , Nitrogen/chemistry
15.
ISA Trans ; 129(Pt B): 345-360, 2022 Oct.
Article En | MEDLINE | ID: mdl-35339275

To improve the stability and economic operation performance of multi-distributed energy resources in networked islanded microgrid, a distributed and integrated control strategy is designed in this study. The strategy is based on the communication network in an islanded microgrid, which is able to achieve minimal generation cost, reliable communication, and stable voltage and frequency. These targets are achieved through the following methods. Firstly, a power regulation part is combined with droop controller to constitute an improved primary control, which can take the line loss factor into account and adjust the output power of each distributed energy resource to its optimal value. Secondly, an optimal path reconstruction method and a Kalman filter estimation method with sliding mode controller are developed to address the communication interruption problem in communication channels and output channels, respectively. In the end, the secondary controller is used to regulate voltage and frequency, and a small signal model method is applied to analyze the impact on the whole system when these designs are applied. The effect of the proposed strategies has been verified by the related case studies.

16.
J Agric Food Chem ; 70(7): 2290-2302, 2022 Feb 23.
Article En | MEDLINE | ID: mdl-35157428

Salvianolic acid B (SAB), also named lithospermic acid B, belongs to a class of water-soluble phenolic acids, originating from plants such as Salvia miltiorrhiza. SAB exhibits a variety of biological activities and has been clinically used to treat cardio- and cerebrovascular diseases and also has great potential as a health care product and medicine for other disorders. However, its biosynthetic pathway has not been completely elucidated. Here, we report the de novo biosynthesis of SAB in Saccharomyces cerevisiae engineered with the heterologous rosmarinic acid (RA) biosynthetic pathway. The created pathway contains seven genes divided into three modules on separate plasmids, pRS424-FjTAL-Sm4CL2, pRS425-SmTAT-SmHPPR or pRS425-SmTAT-CbHPPR, and pRS426-SmRAS-CbCYP-CbCPR. These three modules were cotransformed into S. cerevisiae, resulting in the recombinant strains YW-44 and YW-45. Incubation of the recombinant strains in a basic medium without supplementing any substrates yielded 34 and 30 µg/L of SAB. The findings in this study indicate that the created heterologous RA pathway cooperates with the native metabolism of S. cerevisiae to enable the de novo biosynthesis of SAB. This provides a novel insight into a biosynthesis mechanism of SAB and also lays the foundation for the production of SAB using microbial cell factories.


Saccharomyces cerevisiae , Salvia miltiorrhiza , Benzofurans , Biosynthetic Pathways/genetics , Cinnamates/metabolism , Depsides , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Rosmarinic Acid
17.
J Phys Chem Lett ; 13(3): 733-739, 2022 Jan 27.
Article En | MEDLINE | ID: mdl-35025527

The diversity of valence and bonding of transition metals makes their oxidation processes perplexing at reduced sizes. Here we report a comprehensive study on the oxidation reactions of rhodium clusters Rhn± (n = 3-30) and find that Rh3,4O4+, Rh5-7O6+, and Rh8-13O8+ always dominate the mass distributions showing size-dependent ladder oxygenation which is closely associated with the O-binding modes. While the Rh8-13O8+ clusters display a µ3-O binding mode (hollow site adsorption), Rh3-4O4+ and Rh5-7O6+ favor the µ2-O binding mode (edge-site adsorption) or a mixture of the two modes. The µ3-O binding mode is inclined to yield a cubic Rh13O8, while the µ2-O binding mode gives rise to oxygen-bridge protection for the metal clusters. Such ladder oxidation was also observed for Ptn+, Fen+, Con+, and Nin+ clusters. We propose a three-dimensional diagram for the oxidation states and O-binding modes of metals, and highlight the metalloxocubes M13O8+ for cluster-genetic materials.

18.
Neuroinformatics ; 20(2): 327-351, 2022 04.
Article En | MEDLINE | ID: mdl-34089139

The cerebral atlas of diffusion tensor magnetic resonance image (DT-MRI, shorted as DTI) is one of the key issues in neuroimaging research. It is crucial for comparisons of neuronal structural integrity and connectivity across populations. Usually, the atlas is constructed by iteratively averaging the registered individual image. In tradition, the fuzzy group average image is easily generated in the initial stage, which is harmful to providing clear guidance for subsequent registration, to the performance of the final atlas. To solve this problem, an improved unbiased DTI atlas construction algorithm based on adaptive weights is proposed in this paper. The adaptive weighted strategy based on diffeomorphic deformable tensor registration is introduced. At the same time, the distance measure for tensors is used as a constraint condition, which ensures the unbiasedness of the atlas. Then, using 77 DTIs from the dataset in http://www.brain-development.org , three study-specific atlases, i.e. the constructed atlases of the proposed algorithm and two open-sourced algorithms (DTIAtlasBuilder and DTI-TK), are compared with two standardized atlases (IIT v. 4.1 and NTU-DSI-122-DTI). The performances of the atlases were evaluated in spatial normalization way with six region-based criteria (including Euclidean distances between diffusion tensors, Euclidean distances of the deviatoric tensors, standard deviation, overlaps of eigenvalue-eigenvector, cross-correlations and three sets angles of eigenvalue-eigenvector pairs between diffusion tensors) and three fiber-based criteria (including distances between fiber bundles, angles between fiber bundles and fiber property profile-based criteria). The experimental results showed that the overall performances of the study-specific atlases are better than those of the standardized atlases for specific datasets, and the comprehensive performance of the improved algorithm proposed in this paper is the best.


Brain , Diffusion Tensor Imaging , Algorithms , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neuroimaging
19.
J Phys Chem A ; 125(48): 10392-10400, 2021 Dec 09.
Article En | MEDLINE | ID: mdl-34846886

Cyclotrimerization of acetylene to benzene has attracted significant interest, but the role of geometric and electronic effects on catalytic chemistry remains unclear. To fully elucidate the mechanism of catalytic acetylene-to-benzene conversion, we have performed a gas-phase reaction study of the Fen+, Con+, and Nin+ (n = 1-16) clusters with acetylene utilizing a customized mass spectrometer. It is found that their reactions with acetylene are initiated by C2H2 molecular adsorption and allow for dominant dehydrogenation with the relatively low partial pressure of the acetylene gas. However, at high acetylene concentrations, the cyclotrimerization in Mn+ + 3C2H2 (M = Fe, Co, Ni) becomes the dominant reaction channel. We demonstrate theoretically the favorable thermodynamics and reaction dynamics leading to the formation of the M+(C6H6) products. The results are discussed in terms of a cluster-catalyzed multimolecule synergistic effect and the cation-π interactions.

20.
Natl Sci Rev ; 8(1): nwaa201, 2021 Jan.
Article En | MEDLINE | ID: mdl-34691557

Exploring stable clusters to understand structural evolution from atoms to macroscopic matter and to construct new materials is interesting yet challenging in chemistry. Utilizing our newly developed deep-ultraviolet laser ionization mass spectrometry technique, here we observe the reactions of neutral cobalt clusters with oxygen and find a very stable cluster species of Co13O8 that dominates the mass distribution in the presence of a large flow rate of oxygen gas. The results of global-minimum structural search reveal a unique cubic structure and distinctive stability of the neutral Co13O8 cluster that forms a new class of metal oxides that we named as 'metalloxocubes'. Thermodynamics and kinetics calculations illustrate the structural evolution from icosahedral Co13 to the metalloxocube Co13O8 with decreased energy, enhanced stability and aromaticity. This class of neutral oxygen-passivated metal clusters may be an ideal candidate for genetic materials because of the cubic nature of the building blocks and the stability due to cubic aromaticity.

...