Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 2): 134765, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153671

RESUMEN

Industrial lignin is a waste product of the paper industry, which contains a large amount of oxygen group structure, and can be used to treat industrial wastewater containing Cr(VI). However, lignin has very low reactivity, so how to enhance its adsorption performance is a major challenge at present. In this study, a two-stage hydrothermal and activation strategy was used to activate the lignin activity and doping S element to prepare high-performance S-doped lignin-based polyporous carbon (S-LPC). The results show that the surface of S-LPC is rich in S and O groups and has a well-developed pore structure, which is very beneficial to Cr(VI) uptake -reduction and mass transfer on the material. In the wastewater, the utmost adsorption potential of Cr(VI) by S-LPC achieved 882.83 mg/g. After 7 cycles of regeneration, the adsorption of S-LPC decreased by only approximately 18 %. Ion competition experiments showed that S-LPC has excellent specificity for Cr(VI) adsorption. In factory wastewater, the adsorption performance of S-LPC for Cr(VI) remained above 95 %, which shows the excellent performance of S-LPC in practical applications. The results are of great significance for green chemical utilization of waste lignin, treatment of industrial wastewater and sustainable development.

2.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830801

RESUMEN

AIMS: We investigated the effects of the aggregate spray-seeding (ASS) technique on soil bacterial community diversity, life strategies, and seasonal change. METHODS AND RESULTS: Soil from six plots with original vegetation (CK, n = 6) was compared to soil from 15 plots with spray-seeding restoration (SR, n = 15) using environmental DNA sequencing. The bacterial Shannon and Chao1 indices of SR soils were significantly greater (P < 0.05) than those of CK soils. The Chao1 index for the SR soil bacterial community was significantly greater in summer (P < 0.05) than in winter. The ratio of the relative abundance of bacterial K-strategists to r-strategists (K/r) and the DNA guanine-cytosine (GC) content in the SR soil were significantly lower (P < 0.05) than those in the CK soil. Principal coordinate analysis revealed significant differences between the SR and CK bacterial communities. The GC content was positively correlated with the K/r ratio. Soil conductivity was negatively associated with the K/r ratio and GC content, indicating that ionic nutrients were closely related to bacterial life strategies. CONCLUSIONS: The ASS technique improved soil bacterial diversity, altered community composition, and favored bacterial r-strategists.


Asunto(s)
Bacterias , Biodiversidad , Microbiología del Suelo , Suelo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Suelo/química , Estaciones del Año , Islas , ADN Bacteriano/genética
4.
Chemosphere ; 359: 142262, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714252

RESUMEN

Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.


Asunto(s)
Bentonita , Cadmio , Carbón Orgánico , Oryza , Contaminantes Químicos del Agua , Cadmio/química , Cadmio/análisis , Oryza/química , Carbón Orgánico/química , Adsorción , Bentonita/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
5.
Int J Biol Macromol ; 264(Pt 2): 130812, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484806

RESUMEN

Cr(VI) is of concern because of its high mobility and toxicity. In this work, a two-stage hydrothermal strategy was used to activate the O sites of starch, and by inserting K-ion into the pores, starch-based polyporous carbon (S-PC) adsorption sites was synthesized for removal of Cr(VI). Physicochemical characterization revealed that the O content of the S-PC reached 20.66 % after activation, indicating that S-PC has excellent potential for adsorption of Cr(VI). The S-PC removal rate for 100 mg/L Cr(VI) was 96.29 %, and the adsorption capacity was 883.86 mg/g. Moreover, S-PC showed excellent resistance to interference, and an equal concentration of hetero-ions reduced the activity by less than 5 %. After 8 cycles of factory wastewater treatment, the S-PC maintained 81.15 % of its original activity, which indicated the possibility of practical application. Characterization and model analyses showed that the removal of Cr(VI) from wastewater by the S-PC was due to CC, δ-OH, ν-OH, and C-O-C groups, and the synergistic effect of adsorption and reduction was the key to the performance. This study provides a good solution for treatment of Cr(VI) plant wastewater and provides a technical reference for the use of biological macromolecules such as starch in the treatment of heavy metals.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Carbono , Aguas Residuales , Cromo/química , Metales Pesados/química , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
6.
Environ Res ; 250: 118442, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368919

RESUMEN

Heavy metal pollution, particularly the excessive release of copper (Cu), is an urgent environmental concern. In this study, sodium lignosulfonate/carboxymethyl sa-son seed gum (SL-Cg-g-PAA) designed for remediation of Cu-contaminated water and soil was successfully synthesized through a free radical polymerization method using lignin as a raw material. This hydrogel exhibits remarkable Cu adsorption capability when applied to water, with a maximum adsorption capacity reaching 172.41 mg/g. Important adsorption mechanisms include surface complexation and electrostatic attraction between Cu(Ⅱ) and oxygen-containing functional groups (-OH, -COOH), as well as cation exchange involving -COONa and -SO3Na. Furthermore, SL/Cg-g-PAA effectively mitigated the bioavailability of heavy metals within soil matrices, as evidenced by a notable 14.1% reduction in DTPA extracted state Cu (DTPA-Cu) content in the S4 treatment (0.7% SL/Cg-g-PAA) compared to the control group. Concurrently, the Cu content in both the leaves and roots of pakchoi exhibited substantial decreases of 55.19% and 36.49%, respectively. These effects can be attributed to the precipitation and complexation reactions facilitated by the hydrogel. In summary, this composite hydrogel is highly promising for effective remediation of heavy metal pollution in water and soil, with a particular capability for the immobilization of Cu(Ⅱ) and reduction of its adverse effects on ecosystems.


Asunto(s)
Cobre , Restauración y Remediación Ambiental , Hidrogeles , Lignina , Contaminantes del Suelo , Contaminantes Químicos del Agua , Hidrogeles/química , Cobre/química , Lignina/química , Lignina/análogos & derivados , Contaminantes del Suelo/química , Adsorción , Contaminantes Químicos del Agua/química , Restauración y Remediación Ambiental/métodos
7.
Int J Biol Macromol ; 252: 126432, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37604414

RESUMEN

Cr(VI) is a carcinogenic heavy metal that forms an oxygen-containing anion, which is difficult to remove from water by adsorbents. Here, industrial alkali lignin was transformed into a Cr(VI) adsorbent (N-LC) by using a two-step hydrothermal strategy. The characterization results of the adsorbent showed that O and N were uniformly distributed on the surface of the adsorbent, resulting in a favorable morphology and structure. The Cr(VI) adsorption of N-LC was 13.50 times that of alkali lignin, and the maximum was 326.10 mg g-1, which confirmed the superiority of the two-step hydrothermal strategy. After 7 cycles, the adsorption of N-LC stabilized at approximately 62.18 %. In addition, in the presence of coexisting ions, N-LC showed a selective adsorption efficiency of 85.47 % for Cr(VI), which is sufficient to support its application to actual wastewaters. Model calculations and characterization showed that N and O groups were the main active factors in N-LC, and CO, -OH and pyridinic-N were the main active sites. This study provides a simple and efficient method for the treatment of heavy metals and the utilization of waste lignin, which is expected to be widely applied in the environmental, energy and chemical industries.


Asunto(s)
Carbono , Contaminantes Químicos del Agua , Lignina/química , Adsorción , Contaminantes Químicos del Agua/química , Agua
8.
Int J Biol Macromol ; 244: 125413, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37327921

RESUMEN

The application of most slow-release fertilizers is limited by complex preparation processes and short slow-release periods. In this study, carbon spheres (CSs) were prepared by a hydrothermal method using cellulose as the raw material. Using CSs as the fertilizer carrier, three new carbon-based slow-release nitrogen fertilizers were prepared using direct mixing (SRF-M), water-soluble immersion adsorption (SRFS), and co-pyrolysis (SRFP) methods, respectively. Examination of the CSs revealed regular and ordered surface morphology, enrichment of functional groups on the surfaces, and good thermal stability. Elemental analysis showed that SRF-M was rich in nitrogen (total nitrogen content of 19.66 %). Soil-leaching tests showed that the total cumulative nitrogen release of SRF-M and SRF-S was 55.78 % and 62.98 %, respectively, which greatly slowed down the release of nitrogen. Pot experiment results revealed that SRF-M significantly promoted the growth of pakchoi and improved crop quality. Thus, SRF-M was more effective in practical applications than the other two slow-release fertilizers. Mechanistic studies showed that CN, -COOR, pyridine-N and pyrrolic-N participated in nitrogen release. This study thus provides a simple, effective, and economical method for the preparation of slow-release fertilizers, providing new directions for further research and the develop of new slow-release fertilizers.


Asunto(s)
Celulosa , Fertilizantes , Fertilizantes/análisis , Nitrógeno/análisis , Suelo , Carbono
9.
Int J Biol Macromol ; 239: 124220, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001780

RESUMEN

Reactive blue 19 is one of the abundant carcinogens commonly used in industrial applications. This study transformed industrial lignin into a lignin-based polyporous carbon@polypyrrole (LPC@PPy) by a hydrothermal-activation-in situ polymerization strategy for removal of reactive blue 19. The hydrothermal reaction and polypyrrole polymerization provide abundant O and N groups, and the pore-making process promotes the even distribution of O and N groups in the 3D pore of LPC@PPy, which is favorable for the adsorption of reactive blue 19. The adsorption capacity of LPC@PPy for reactive blue 19 is 537.52 mg g-1, which is 2.04 times the performance of LPC (only hydrothermal and activation process, only have O groups) and 3.36 times that of LC (direct lignin activation, lack of O and N groups). After 8 cycles, LPC@PPy still maintained a high adsorption capacity of 92.14 % for reactive blue 19. In addition, this study found that N and O groups in the material played an important role in adsorption, mainly pyridinic-N, C-OH, -COOR, -C-O- and CC. This work provides a new strategy for the removal of reactive blue 19 and determines the groups that mainly interact with reactive blue 19, which provides a new reference for adsorption, catalysis and related fields.


Asunto(s)
Carbono , Contaminantes Químicos del Agua , Polímeros , Pirroles , Lignina , Adsorción
10.
Sci Total Environ ; 867: 161591, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640881

RESUMEN

Ammonium nitrogen (NH4+-N) is a form of N that is non-negligible in eutrophication water as well as an essential nutrient for plants growing. Carbon materials are considered superior for the adsorption recovery of excess NH4+-N in water bodies. The sulfonic-humic acid char (SHAC) was prepared from humic acid (HA) by pyrolysis and hydrothermal grafting with sodium allyl sulfonate. SEM-mapping, FTIR and XPS results indicated that sulfonic groups (-SO3H) were successfully grafted onto SHAC. The adsorption kinetic fitting displayed that the adsorption of NH4+-N by SHAC conformed to the pseudo-second-order kinetics and could reach equilibrium in about 100 min. The maximum adsorption of NH4+-N by SHAC was 77.24 mg/g, it was mainly contributed by electrostatic attraction, hydrogen bonding and pore volume sites. SHAC adsorption of NH4+-N resulted in the material SHAC-N, which desorption rate was considerably slower than that of commercially available ammonium chloride (NH4Cl) fertilizer and in accordance with the first order model. Wheat growth experiments revealed that the quality of wheat treated with SHAC-N (higher 100-grain weight and lower nitrate content) was better than that of NH4Cl fertilizer. In addition, the higher residual NH4+-N in the SHAC-N treatment soil facilitated subsequent crop planting. These results indicated that SHAC has excellent adsorption and slow release of NH4+-N, and has great potential application for N management in environment and agriculture.

11.
Sci Total Environ ; 856(Pt 1): 159033, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183665

RESUMEN

Biochar application for the remediation of cadmium (Cd)-contaminated soils may result in a relative deficiency of phosphorus (P) due to the disruption of soil nutrient balance. However, the P acquisition strategies of plants in such situation are still unclear. In this study, analyses on soil zymography and root morphology were combined for the first time to investigate the effects of pristine and P-modified biochars from apple tree branches on the P acquisition strategies of wheat under Cd stress. The results show that the application of pristine biochar exacerbated the soil's relative P deficiency. Wheat was forced to improve foraging for P by forming longer and thinner roots (average diameter 0.284 mm) as well as releasing more phosphatase to promote P mobilization in the soil. Moreover, bioavailable Cd affected the P acquisition strategies of wheat through stimulating the release of phosphatase from roots. The P-modified biochar maintained high levels of Olsen-P (>100 mg kg-1) in the soil over time by slow release, avoiding the creation of relative P deficiency in the soil; and increased the average root diameter (0.338 mm) and growth performance index, which promoted shoot growth (length and biomass). Furthermore, the P-modified biochar reduced DTPA-extracted Cd concentration in soils by 79.8 % (pristine biochar by 26.9 %), and decreased the Cd translocation factor from root to shoot as well as Cd concentration in the shoots. Therefore, P-modified biochar has a great potential to regulate the soil element balance (carbon, nitrogen, and P), promote wheat growth, and remediate the Cd-contaminated soil.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Suelo , Triticum/metabolismo , Fósforo , Contaminantes del Suelo/análisis , Carbón Orgánico , Monoéster Fosfórico Hidrolasas
12.
J Hazard Mater ; 437: 129345, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35716565

RESUMEN

Reducing the harm of heavy metals to the environment has been a major scientific challenge. In this study, D-(+)-xylose was used to prepare an adsorbent with rich O groups and three-dimensional porous structures for Cr(VI) adsorption. What's more, the adsorption sites of many oxygen groups in the material were combined with the three-dimensionally connected porous structures, which made the adsorption sites fully in contact with Cr(VI). At the concentration of 300 mg/L, the removal rate of Cr(VI) was 94.50%, 6.4 times that of the non-porous treatment and 9.6 times that of the non-porous and O group treatment. The adsorbent showed a high adsorption capacity (910.10 mg/g) for Cr(VI), and the adsorption model proved that the adsorbent was a multi-molecular layer adsorbent. In addition, the adsorption was controlled by chemical reaction and diffusion, which was also attributed to the three-dimensional porous structure and abundant oxygen groups of the material. XPS and FTIR indicated that four O groups participated in the adsorption reaction (-OH, C-O-C, CO, and C-O), and C-O-C and C-O were the main reaction sites. After treating wastewater from electroplating plants with X-PC, the discharged water met international and domestic discharge standards (Cr(VI) removal rate> 99.90%). This work provides a new idea for the application of sugars in the environment and the design of porous adsorbents.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Cromo/química , Concentración de Iones de Hidrógeno , Cinética , Oxígeno , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Xilosa
13.
Int J Biol Macromol ; 207: 254-262, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263647

RESUMEN

Due to its wide application and high toxicity, Remazol Brilliant Blue R (RBBR) has become a fatal contaminate in aquatic environment. In this study, to remove RBBR, a cellulose-based activated carbon (CAC) was synthesized at 800 °C with a cellulose-based hydrocarbon (CHC) activated by NaOH. The CHC was synthesized by the hydrothermal method with microcrystalline cellulose and urea as raw materials. The CAC possessed great amounts of N and O-containing functional groups and had well-developed pore structure. The BET specific surface area of CAC reached up to 1872.30 m2/g. The maximum adsorption capacity of CAC on RBBR was 653.19 mg/g during which chemical adsorption was the dominant mechanism. Adsorption thermodynamics indicated that the adsorption of RBBR by CAC was exothermic and spontaneous. Regeneration adsorption and ion competition experiments showed that the material could be used repeatedly and had good anti-interference ability. In addition, the removal rates of RBBR by CAC in actual water bodies, including river water and artificial lake water, were above 99.40%. Therefore, the novel CAC shows great potential for the remediation of printing and dyeing wastewater.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Antraquinonas , Celulosa , Cinética , Aguas Residuales , Agua
14.
Int J Biol Macromol ; 204: 310-320, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149091

RESUMEN

A novel lignin-based hierarchical porous carbon (L-HPC) was prepared to remove Cr(VI) from water by using industrial alkali lignin through simple hydrothermal-induced assembly and alkali activation strategy. The adsorbent were characterized by SEM-EDS mapping, TEM, BET, XPS, FTIR, Raman spectroscopy and zeta potential. The characterization results indicated that L-HPC contained three-dimensional connected channels and many adsorbing N, O and other adsorption groups, which is very beneficial for Cr(VI) adsorption. The kinetics showed that the L-HPC adsorption of Cr(VI) was chemical adsorption and mainly controlled by intraparticle diffusion. The isotherm and thermodynamics indicated that L-HPC adsorption of Cr(VI) conforms to the Freundlich model, L-HPC is a kind of multimolecular layer adsorbent, and the adsorption capacity of Cr(VI) by L-HPC was 887.8 mg/g, which was significantly higher than values for other adsorbents. Ion competition simulation and actual water body tests showed that L-HPC exhibits high selectivity for Cr(VI) adsorption, adsorption cycle experiments show that L-HPC maintains over 83% performance after 12 cycles. Cost analysis shows that L-HPC is suitable for mass production. Therefore, L-HPC is a Cr(VI) adsorbent with high efficiency, high selectivity, and high reusability, which is broadly applicable and shows favorable prospects.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbono , Cromo/química , Concentración de Iones de Hidrógeno , Cinética , Lignina , Porosidad , Aguas Residuales/química , Contaminantes Químicos del Agua/química
15.
Sci Total Environ ; 823: 153547, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101510

RESUMEN

Although the plant-growth promotion by algae have been studied comprehensively, their impacts on indigenous soil microbiome remain largely unexplored. Herein we conducted a greenhouse experiment to investigate the changes in soil properties and corresponding microbial communities (bacterial, fungal and protists) after 2-year application of algae and their dynamic variation within 60 days immediately after algae addition. In comparison with Control treatment, the impact of algae on soil properties and microbial communities was huge, especially the content of nitrate was decreased however soluble organic nitrogen (SON) was increased. The increased copies of nifH gene suggested the improved potential of nitrogen fixation in algae treated soil. By constructing multitrophic ecological network, soil microorganisms were divided into several modules, and two key-stone microbial taxa (module 1 and 2) showed strong associations with the content of nitrate and SON. With addition of algae, the abundance of most microbial taxa was decreased and increased in module 1 and module 2, respectively. Particularly, module 1 and module 2 were proved to be taxonomically and functionally comprised of different microbes. Moreover, random forest analysis and structural equation model indicated that the key-stone microbial taxa were more important factors affecting the content of nitrate and SON than algae, bacterial, fungal and protistan communities and the influence of algae on soil nitrogen cycling mostly depended on their indirect effects via module 1 and 2.


Asunto(s)
Nitrógeno , Suelo , Hongos/genética , Nitrógeno/análisis , Plantas , Suelo/química , Microbiología del Suelo
16.
Sci Total Environ ; 819: 152876, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998767

RESUMEN

Phosphate (P)-modified biochar is a good material for cadmium (Cd) immobilization, and the pore-forming effect of potassium ions (K+) can favor the P loading on biochar. However, few studies have been done specifically on Cd(II) removal by composites of potassium phosphates with biochar, and the removal potential and mechanisms are not clear. Herein, apple tree branches, a major agricultural waste suitable for the development of porous materials, were pyrolyzed individually or together with KH2PO4, K2HPO4·3H2O, or K3PO4·3H2O to obtain biochars to remove Cd(II), denoted as pristine BC, BC-1, BC-2, and BC-3, respectively. The results showed that the orthophosphates containing more K+ enlarged the specific surface area, total pore volume and phosphorus loading of biochar. Co-pyrolysis of apple tree branches and P promoted the thermochemical transformation of P species. Only weak signal of orthophosphate was observed in the pristine BC, while the presence of orthophosphate, pyrophosphate and metaphosphate were detected in BC-1, and BC-2 and BC-3 showed the presence of orthophosphate and pyrophosphate. The maximum Cd(II) adsorption capacities of pristine BC, BC-1, BC-2 and BC-3 were 10.4, 88.5, 95.8, and 116 mg·g-1, respectively. Orthophosphate modification enhanced the Cd(II) adsorption capacity due to the formation of Cd-P-precipitates, namely Cd5(PO4)3Cl, Cd5(PO4)3OH, Cd3(PO4)2, Cd2P2O7, and Cd(PO3)2. Furthermore, higher cation exchange efficiencies between Cd(II) and K+ in P-modified biochars also contributed to their high Cd(II) adsorption capacity. Cd(II) removal by BC-3 from artificially polluted water bodies showed more than 99.98% removal rates. Application of BC-3 also reduced the diethylene triamine pentaacetic acid-extracted Cd(II) in soil by 69.1%. The co-pyrolysis of apple tree branches and potassium phosphates shows great prospect in Cd(II) wastewater/soil treatment and provide a promising solution for agricultural waste utilization and carbon sequestration.


Asunto(s)
Malus , Contaminantes Químicos del Agua , Adsorción , Cadmio/análisis , Carbón Orgánico , Fosfatos
17.
Sci Total Environ ; 819: 153146, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041957

RESUMEN

Biochar-based slow-release fertilizers (BSRFs) are vital for the development of eco-friendly and sustainable agriculture. Considerable attention has been given to enhancing the efficiency of fertilizers (EEFs) by appropriate modification or binding to reduce nutrient waste and improve the slow-release effect on the growth of plants. In this study, sustained binding materials were presented for BSRF synthesis, including pyroligneous acids (PA), bio-oil (BO), and modified starch binder (MSB). The results show that the release ratio of phosphorus from PA + BO+MSB was 4.7%, 15.2%, and 21.2% slower than that of PA, BO, and MSB alone, respectively. The BSRFs were characterized by SEM, XRD, FT-IR, XPS, and EDS, and the release kinetic outcome revealed that PA + BO+MSB contributed to the formation of a satisfactory structure in the BSRFs. The MSB viscosity significantly influences the slow-release performance and accumulation of N, P, and K nutrients. Moreover, economic assessments showed that PA + BO+MSB exhibited the lowest cost.


Asunto(s)
Fertilizantes , Pirólisis , Fertilizantes/análisis , Fósforo , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química
18.
BMC Plant Biol ; 21(1): 269, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116636

RESUMEN

BACKGROUND: Raising nitrogen use efficiency of crops by improving root system architecture is highly essential not only to reduce costs of agricultural production but also to mitigate climate change. The physiological mechanisms of how biochar affects nitrogen assimilation by crop seedlings have not been well elucidated. RESULTS: Here, we report changes in root system architecture, activities of the key enzymes involved in nitrogen assimilation, and cytokinin (CTK) at the seedling stage of cotton with reduced urea usage and biochar application at different soil layers (0-10 cm and 10-20 cm). Active root absorption area, fresh weight, and nitrogen agronomic efficiency increased significantly when urea usage was reduced by 25% and biochar was applied in the surface soil layer. Glutamine oxoglutarate amino transferase (GOGAT) activity was closely related to the application depth of urea/biochar, and it increased when urea/biochar was applied in the 0-10 cm layer. Glutamic-pyruvic transaminase activity (GPT) increased significantly as well. Nitrate reductase (NR) activity was stimulated by CTK in the very fine roots but inhibited in the fine roots. In addition, AMT1;1, gdh3, and gdh2 were significantly up-regulated in the very fine roots when urea usage was reduced by 25% and biochar was applied. CONCLUSION: Nitrogen assimilation efficiency was significantly affected when urea usage was reduced by 25% and biochar was applied in the surface soil layer at the seedling stage of cotton. The co-expression of gdh3 and gdh2 in the fine roots increased nitrogen agronomic efficiency. The synergistic expression of the ammonium transporter gene and gdh3 suggests that biochar may be beneficial to amino acid metabolism.


Asunto(s)
Carbón Orgánico/metabolismo , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Productos Agrícolas/anatomía & histología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Gossypium/anatomía & histología , Raíces de Plantas/anatomía & histología , Plantones/anatomía & histología
19.
Sci Total Environ ; 792: 148452, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34157533

RESUMEN

Industrial wastewater discharge leads to serious eutrophication of water bodies, but most of the adsorbents are difficult to selectively remove phosphorus and are difficult to use multiple times, therefore, developing an efficient and reusable material for removal phosphate is extremely necessary. In this work, a kind of highly selective phosphate adsorbent, microporous carbon material (MCM), based on glucose was synthesized by hydrothermal and activation method. The MCM were characterized by SEM, XPS, BET, element analysis, et al. The phosphate adsorption mechanism of MCM were investigated by batch adsorption experiment and model calculation. Results showed that MCM had a high adsorption capacity for phosphate in a wide range of pH (1.5-10). Langmuir model and pseudo-second-order kinetic revealed that the process was endothermic and involved both physical and chemical adsorption. The main phosphate adsorption mechanisms of MCM are electrostatic attraction, ion complexation, hydrogen bonding, and physical adsorption. The ions competition simulation experiment indicated that the MCM was highly selective for phosphate removal. Furthermore, the phosphate adsorption tests were carried out on five kinds of water, and the removal rates were all above 99.98%. The 20 regenerative cycles experiment revealed that the MCM had high reusability. Therefore, this kind of novel glucose-based highly selective phosphate adsorbent with multi-cycle phosphorus removal performance can improve the eutrophication of water. This study provides a new idea for phosphate removal and expands the application range of glucose-based carbon materials.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Adsorción , Glucosa , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales , Contaminantes Químicos del Agua/análisis
20.
Sci Rep ; 11(1): 5002, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654125

RESUMEN

Soil labile organic carbon (LOC) responds rapidly to environmental changes and plays an important role in carbon cycle. In this study, the seasonal fluctuations in LOC, the activities of carbon-cycle related enzymes, and the bacterial and fungal communities were analyzed for soils collected from two forests, namely Betula albosinensis (Ba) and Picea asperata Mast. (Pa), in the Qinling Mountains of China. Results revealed that the seasonal average contents of microbial biomass carbon (MBC), easily oxidized organic carbon (EOC), and dissolved organic carbon (DOC) of Pa forest soil were 13.5%, 30.0% and 15.7% less than those in Ba soil. The seasonal average enzyme activities of ß-1,4-glucosidase (ßG), and ß-1,4-xylosidase (ßX) of Ba forest soils were 30.0% and 32.3% higher than those of Pa soil while the enzyme activity of cellobiohydrolase (CBH) was 19.7% lower. Furthermore, the relative abundance of Acidobacteria was significantly higher in summer than in winter, whereas the relative abundance of Bacteroidetes was higher in winter. Regarding the fungal communities, the relative abundance of Basidiomycota was lowest in winter, whereas Ascomycota predominated in the same season. In addition, the soil LOC was significantly positively correlated with the CBH, ßG and ßX activities. Changes in LOC were significantly correlated with Acidobacteria, Bacteroidetes and Basidiomycota. We conclude that the seasonal fluctuations in forest soil LOC fractions relied on carbon cycle-associated enzymatic activities and microorganisms, which in turn were affected by climatic conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA