Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Anal Chem ; 90(9): 5620-5626, 2018 05 01.
Article En | MEDLINE | ID: mdl-29620353

Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 µm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 µL of water, a volume that is more than 100× larger than reported so far. The 1H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.

2.
J Magn Reson ; 270: 142-146, 2016 09.
Article En | MEDLINE | ID: mdl-27490302

A 550-fold increase in the liquid state (13)C NMR signal of a 50µL sample was obtained by first hyperpolarizing the sample at 20K using a gyrotron (260GHz), then, switching its frequency in order to apply 100W for 1.5s so as to melt the sample, finally, turning off the gyrotron to acquire the (13)C NMR signal. The sample stays in its NMR resonator, so the sequence can be repeated with rapid cooling as the entire cryostat stays cold. DNP and thawing of the sample are performed only by the switchable and tunable gyrotron without external devices. Rapid transition from DNP to thawing in one second time scale was necessary especially in order to enhance liquid (1)H NMR signal.

...