Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 3(10): 13484-13493, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458057

RESUMEN

A photoresponsive microstructured composite is fabricated through the impregnation of cellulosic filter paper (FP) with a spiropyran-modified acrylic polymer. The polymer enwraps uniformly each individual cellulose fiber, increases the thermal stability of cellulose, and ensures the preservation of the composite functionalities even upon removal of the surface layers through mechanical scratching. The photochromic spiropyran moieties of the polymer, even while embedded in the cellulosic sheet, can reversibly interconvert between the colorless spiropyran and the pink merocyanine isomeric states upon irradiation with UV and visible light, respectively. Moreover, the photochromic polymer presents a faster photochromic response and a higher resistance to photodegradation, with an outstanding reusability for more than 100 switching cycles when it is incorporated in the cellulose network. Most importantly, the acidochromism of the modified FP, attributed to the spiropyran molecules after UV activation, allows the real-time optical and visual detection of acidity changes and spoilage in food products, such as wine and milk. Spoilage due to bacterial degradation and oxidation processes generates acidic vapors that induce the protonation of the merocyanine. This results in a visually detectable chromic transition from pink to white of the treated cellulose fibers, corresponding to a blue shift in the absorption spectrum. The developed photoresponsive cellulose composite can serve as cost-effective robust optical component in integrated functional platforms and consumer-friendly indicators for smart food packaging, as well as portable on demand acidoresponsive interfaces for gas monitoring in industrial and environmental applications.

2.
ACS Appl Mater Interfaces ; 9(46): 40707-40715, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29120601

RESUMEN

Photochromic spiropyran-doped silk fibroin poly(ethylene oxide) nanofibers which combine the attractive properties and biocompatibility of silk with the photocontrollable and reversible optical, mechanical, and chemical response of the spiropyran dopants are herein presented. As proved, the reversible variation of the absorption and emission signals of the mats and of their Young's modulus upon alternate UV and visible light irradiation is ascribed to the reversible photoconversion of the spiropyran form to its polar merocyanine counterpart. Most importantly, the interactions of the merocyanine molecules with acidic vapors as well as with heavy metal ions dispersed in solution produce analyte-specific spectral changes in the emission profile of the composite, accompanied by a characteristic chromic variation. Because of the high surface-to-volume ratio of the nanofibrous network, such interactions are fast, thus enabling both an optical and a visual detection in a 30-60 s time scale. The sensing platform can be easily regenerated for more than 20 and 3 cycles upon acid or ion depletion, respectively. Overall, the photocontrolled properties of the silk composites combined with a straightforward preparation method render them suitable as porous materials and scaffolds with tunable compliance and reusable nanoprobes for real time optical detection in biomedical, environmental, and industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA