Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
Nat Biotechnol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806736

RESUMEN

Therapeutic prime editing of hematopoietic stem and progenitor cells (HSPCs) holds great potential to remedy blood disorders. Quiescent cells have low nucleotide levels and resist retroviral infection, and it is possible that nucleotide metabolism could limit reverse transcription-mediated prime editing in HSPCs. We demonstrate that deoxynucleoside supplementation and Vpx-mediated degradation of SAMHD1 improve prime editing efficiency in HSPCs, especially when coupled with editing approaches that evade mismatch repair.

3.
Front Immunol ; 15: 1315283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510235

RESUMEN

Background: In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods: We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCRED) and permanently disrupted LAG3, TIM-3 or 2B4 genes (IRKO) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCRED-IRKO and IR competent (TCRED-IRCOMP) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro. Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results: We show that upon chronic stimulation, TCRED-IRKO cells are superior to TCRED-IRCOMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo. Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion: These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.


Asunto(s)
Linfocitos T CD8-positivos , Mieloma Múltiple , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/genética , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral
4.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324638

RESUMEN

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Exones , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
5.
Nat Commun ; 15(1): 89, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167707

RESUMEN

Human natural killer T cells (NKTs) are innate-like T lymphocytes increasingly used for cancer immunotherapy. Here we show that human NKTs expressing the pro-inflammatory cytokine interleukin-12 (IL-12) undergo extensive and sustained molecular and functional reprogramming. Specifically, IL-12 instructs and maintains a Th1-polarization program in NKTs in vivo without causing their functional exhaustion. Furthermore, using CD62L as a marker of memory cells in human NKTs, we observe that IL-12 maintains long-term CD62L-expressing memory NKTs in vivo. Notably, IL-12 initiates a de novo programming of memory NKTs in CD62L-negative NKTs indicating that human NKTs circulating in the peripheral blood possess an intrinsic differentiation hierarchy, and that IL-12 plays a role in promoting their differentiation to long-lived Th1-polarized memory cells. Human NKTs engineered to co-express a Chimeric Antigen Receptor (CAR) coupled with the expression of IL-12 show enhanced antitumor activity in leukemia and neuroblastoma tumor models, persist long-term in vivo and conserve the molecular signature driven by the IL-12 expression. Thus IL-12 reveals an intrinsic plasticity of peripheral human NKTs that may play a crucial role in the development of cell therapeutics.


Asunto(s)
Células T Asesinas Naturales , Receptores Quiméricos de Antígenos , Humanos , Interleucina-12/genética , Citotoxicidad Inmunológica , Activación de Linfocitos
6.
Nature ; 621(7978): 404-414, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648862

RESUMEN

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.


Asunto(s)
Epítopos , Edición Génica , Inmunoterapia , Leucemia Mieloide Aguda , Animales , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD34/metabolismo , Trasplante de Médula Ósea , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Hematopoyesis , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Xenoinjertos/inmunología , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Receptores Quiméricos de Antígenos/inmunología , Recurrencia , Linfocitos T/inmunología , Acondicionamiento Pretrasplante , Escape del Tumor , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Methods Mol Biol ; 2606: 43-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592307

RESUMEN

Base editing by nucleotide deaminases linked to programmable DNA-binding proteins represents a promising approach to remedy blood disorders. Here we describe the ex vivo base editing of human CD34+ hematopoietic stem and progenitor cells (HSPCs) by electroporation of base editor mRNA or protein.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Humanos , Células Madre Hematopoyéticas/metabolismo , Antígenos CD34/metabolismo
8.
Mol Ther ; 31(1): 230-248, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35982622

RESUMEN

Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Edición Génica , Sistemas CRISPR-Cas , Células Madre Hematopoyéticas , Trasplante de Células Madre Hematopoyéticas/métodos
9.
Hum Vaccin Immunother ; 18(6): 2141998, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36330584

RESUMEN

Hexavalent (HV) vaccination is a priority for newborn protection and in Italy is included in the National Immunization Plan with a three doses cycle at 61, 121 and 301 days of age. A retrospective clinical study has been conducted to evaluate real life clinical practice of HV vaccination in the fourth most populous Italian Region. Data on the completion of the HV cycle, on the interchangeability between the two HV adopted in 2016-2017 (DTaP3-IPV-HB/Hib) and 2018-2019 (DTaP5-IPV-HB-Hib) and on the use above the established age, were collected in five Sicilian Local Health Authorities. Data showed an average 91.5% completion of the vaccination cycle at 24 months of age. The average age of administration was significantly higher in children who switched between the two hexavalent vaccines compared to those who completed the vaccination cycle with the same product (p-value <.01). Interchangeability with one or two doses of HV was also documented in 17.8% (2018) and 16% (2019) of vaccinated infants. Co-administration with other vaccines included in the Sicilian Vaccination Schedule was 85% with anti-pneumococcal vaccination and 65% with anti-rotavirus vaccination. Children vaccinated above recommended age (from 15 to >36 months) significantly after the introduction of mandatory vaccination in Italy (p-value <.001). This retrospective analysis will contribute to manage potential disruptions due to missed routine immunization opportunities, as the pandemic has caused, with strategies such as catch up above recommended age as well as interchangeability. Data could also help to demonstrate the need to optimize vaccine sessions through co-administration, that strongly contribute to increase vaccination coverage rates and respect of timing of vaccination schedules.


Asunto(s)
Vacuna contra Difteria, Tétanos y Tos Ferina , Vacunas contra Haemophilus , Lactante , Recién Nacido , Niño , Humanos , Vacuna Antipolio de Virus Inactivados , Vacunas contra Hepatitis B , Salud Pública , Estudios Retrospectivos , Vacunas Combinadas , Esquemas de Inmunización , Vacunación/métodos , Sicilia
10.
Sci Transl Med ; 14(668): eabn5811, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36288278

RESUMEN

Heterozygous mutations in CTLA-4 result in an inborn error of immunity with an autoimmune and frequently severe clinical phenotype. Autologous T cell gene therapy may offer a cure without the immunological complications of allogeneic hematopoietic stem cell transplantation. Here, we designed a homology-directed repair (HDR) gene editing strategy that inserts the CTLA-4 cDNA into the first intron of the CTLA-4 genomic locus in primary human T cells. This resulted in regulated expression of CTLA-4 in CD4+ T cells, and functional studies demonstrated CD80 and CD86 transendocytosis. Gene editing of T cells isolated from three patients with CTLA-4 insufficiency also restored CTLA-4 protein expression and rescued transendocytosis of CD80 and CD86 in vitro. Last, gene-corrected T cells from CTLA-4-/- mice engrafted and prevented lymphoproliferation in an in vivo murine model of CTLA-4 insufficiency. These results demonstrate the feasibility of a therapeutic approach using T cell gene therapy for CTLA-4 insufficiency.


Asunto(s)
Activación de Linfocitos , Linfocitos T , Humanos , Ratones , Animales , Antígeno CTLA-4/genética , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Edición Génica , ADN Complementario , Antígenos CD/metabolismo , Antígeno B7-1/genética , Antígeno B7-1/metabolismo
12.
Front Genome Ed ; 3: 618378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34713250

RESUMEN

In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.

14.
Nat Med ; 27(8): 1458-1470, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34140705

RESUMEN

Gene therapy (GT) has rapidly attracted renewed interest as a treatment for otherwise incurable diseases, with several GT products already on the market and many more entering clinical testing for selected indications. Clonal tracking techniques based on vector integration enable monitoring of the fate of engineered cells in the blood of patients receiving GT and allow assessment of the safety and efficacy of these procedures. However, owing to the limited number of cells that can be tested and the impracticality of studying cells residing in peripheral organs without performing invasive biopsies, this approach provides only a partial snapshot of the clonal repertoire and dynamics of genetically modified cells and reduces the predictive power as a safety readout. In this study, we developed liquid biopsy integration site sequencing, or LiBIS-seq, a polymerase chain reaction technique optimized to quantitatively retrieve vector integration sites from cell-free DNA released into the bloodstream by dying cells residing in several tissues. This approach enabled longitudinal monitoring of in vivo liver-directed GT and clonal tracking in patients receiving hematopoietic stem cell GT, improving our understanding of the clonal composition and turnover of genetically modified cells in solid tissues and, in contrast to conventional analyses based only on circulating blood cells, enabling earlier detection of vector-marked clones that are aberrantly expanding in peripheral tissues.


Asunto(s)
Ácidos Nucleicos Libres de Células/genética , Vectores Genéticos/genética , Ácidos Nucleicos Libres de Células/efectos adversos , Terapia Genética , Humanos , Leucemia/genética , Leucemia/terapia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Linfoma/genética , Linfoma/terapia
15.
Nat Protoc ; 16(6): 2991-3025, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34031609

RESUMEN

Gene editing by engineered nucleases has revolutionized the field of gene therapy by enabling targeted and precise modification of the genome. However, the limited availability of methods for clonal tracking of edited cells has resulted in a paucity of information on the diversity, abundance and behavior of engineered clones. Here we detail the wet laboratory and bioinformatic BAR-Seq pipeline, a strategy for clonal tracking of cells harboring homology-directed targeted integration of a barcoding cassette. We present the BAR-Seq web application, an online, freely available and easy-to-use software that allows performing clonal tracking analyses on raw sequencing data without any computational resources or advanced bioinformatic skills. BAR-Seq can be applied to most editing strategies, and we describe its use to investigate the clonal dynamics of human edited hematopoietic stem/progenitor cells in xenotransplanted hosts. Notably, BAR-Seq may be applied in both basic and translational research contexts to investigate the biology of edited cells and stringently compare editing protocols at a clonal level. Our BAR-Seq pipeline allows library preparation and validation in a few days and clonal analyses of edited cell populations in 1 week.


Asunto(s)
Rastreo Celular/métodos , Células Clonales , Edición Génica , Programas Informáticos , Código de Barras del ADN Taxonómico
16.
EMBO Mol Med ; 13(3): e13545, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33475257

RESUMEN

Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X-linked hyper-IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one-size-fits-all editing strategy for effective T-cell correction, selection, and depletion and investigated the therapeutic potential of T-cell and HSPC therapies in the HIGM1 mouse model. Edited patients' derived CD4 T cells restored physiologically regulated CD40L expression and contact-dependent B-cell helper function. Adoptive transfer of wild-type T cells into conditioned HIGM1 mice rescued antigen-specific IgG responses and protected mice from a disease-relevant pathogen. We then obtained ~ 25% CD40LG editing in long-term repopulating human HSPC. Transplanting such proportion of wild-type HSPC in HIGM1 mice rescued immune functions similarly to T-cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T-cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.


Asunto(s)
Síndrome de Inmunodeficiencia con Hiper-IgM Tipo 1 , Síndrome de Inmunodeficiencia con Hiper-IgM , Animales , Edición Génica , Células Madre Hematopoyéticas , Humanos , Ratones , Linfocitos T
17.
Nat Biotechnol ; 38(11): 1298-1308, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32601433

RESUMEN

Targeted gene editing in hematopoietic stem cells (HSCs) is a promising treatment for several diseases. However, the limited efficiency of homology-directed repair (HDR) in HSCs and the unknown impact of the procedure on clonal composition and dynamics of transplantation have hampered clinical translation. Here, we apply a barcoding strategy to clonal tracking of edited cells (BAR-Seq) and show that editing activates p53, which substantially shrinks the HSC clonal repertoire in hematochimeric mice, although engrafted edited clones preserve multilineage and self-renewing capacity. Transient p53 inhibition restored polyclonal graft composition. We increased HDR efficiency by forcing cell-cycle progression and upregulating components of the HDR machinery through transient expression of the adenovirus 5 E4orf6/7 protein, which recruits the cell-cycle controller E2F on its target genes. Combined E4orf6/7 expression and p53 inhibition resulted in HDR editing efficiencies of up to 50% in the long-term human graft, without perturbing repopulation and self-renewal of edited HSCs. This enhanced protocol should broaden applicability of HSC gene editing and pave its way to clinical translation.


Asunto(s)
Rastreo Celular , Edición Génica , Células Madre Hematopoyéticas/citología , Animales , Secuencia de Bases , Linaje de la Célula , Células Clonales , Dependovirus/metabolismo , Fase G2 , Células HEK293 , Humanos , Ratones , Reparación del ADN por Recombinación , Reproducibilidad de los Resultados , Fase S , Transcripción Genética , Trasplante Heterólogo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Proteínas Virales/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cell Stem Cell ; 24(4): 551-565.e8, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30905619

RESUMEN

Precise gene editing in hematopoietic stem and progenitor cells (HSPCs) holds promise for treating genetic diseases. However, responses triggered by programmable nucleases in HSPCs are poorly characterized and may negatively impact HSPC engraftment and long-term repopulation capacity. Here, we induced either one or several DNA double-stranded breaks (DSBs) with optimized zinc-finger and CRISPR/Cas9 nucleases and monitored DNA damage response (DDR) foci induction, cell-cycle progression, and transcriptional responses in HSPC subpopulations, with up to single-cell resolution. p53-mediated DDR pathway activation was the predominant response to even single-nuclease-induced DSBs across all HSPC subtypes analyzed. Excess DSB load and/or adeno-associated virus (AAV)-mediated delivery of DNA repair templates induced cumulative p53 pathway activation, constraining proliferation, yield, and engraftment of edited HSPCs. However, functional impairment was reversible when DDR burden was low and could be overcome by transient p53 inhibition. These findings provide molecular and functional evidence for feasible and seamless gene editing in HSPCs.


Asunto(s)
Daño del ADN , Edición Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Humanos , Células K562 , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID
19.
Cell Stem Cell ; 23(6): 820-832.e9, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30416070

RESUMEN

Innate immune factors may restrict hematopoietic stem cell (HSC) genetic engineering and contribute to broad individual variability in gene therapy outcomes. Here, we show that HSCs harbor an early, constitutively active innate immune block to lentiviral transduction that can be efficiently overcome by cyclosporine H (CsH). CsH potently enhances gene transfer and editing in human long-term repopulating HSCs by inhibiting interferon-induced transmembrane protein 3 (IFITM3), which potently restricts VSV glycoprotein-mediated vector entry. Importantly, individual variability in endogenous IFITM3 levels correlated with permissiveness of HSCs to lentiviral transduction, suggesting that CsH treatment will be useful for improving ex vivo gene therapy and standardizing HSC transduction across patients. Overall, our work unravels the involvement of innate pathogen recognition molecules in immune blocks to gene correction in primary human HSCs and highlights how these roadblocks can be overcome to develop innovative cell and gene therapies.


Asunto(s)
Ciclosporina/farmacología , Edición Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Lentivirus/efectos de los fármacos , Lentivirus/genética , Transducción Genética , Animales , Línea Celular , Femenino , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados
20.
Sci Transl Med ; 9(411)2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021165

RESUMEN

Targeted genome editing in hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematological diseases. However, the limited efficiency of homology-directed editing in primitive HSPCs constrains the yield of corrected cells and might affect the feasibility and safety of clinical translation. These concerns need to be addressed in stringent preclinical models and overcome by developing more efficient editing methods. We generated a humanized X-linked severe combined immunodeficiency (SCID-X1) mouse model and evaluated the efficacy and safety of hematopoietic reconstitution from limited input of functional HSPCs, establishing thresholds for full correction upon different types of conditioning. Unexpectedly, conditioning before HSPC infusion was required to protect the mice from lymphoma developing when transplanting small numbers of progenitors. We then designed a one-size-fits-all IL2RG (interleukin-2 receptor common γ-chain) gene correction strategy and, using the same reagents suitable for correction of human HSPC, validated the edited human gene in the disease model in vivo, providing evidence of targeted gene editing in mouse HSPCs and demonstrating the functionality of the IL2RG-edited lymphoid progeny. Finally, we optimized editing reagents and protocol for human HSPCs and attained the threshold of IL2RG editing in long-term repopulating cells predicted to safely rescue the disease, using clinically relevant HSPC sources and highly specific zinc finger nucleases or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9). Overall, our work establishes the rationale and guiding principles for clinical translation of SCID-X1 gene editing and provides a framework for developing gene correction for other diseases.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Marcación de Gen/métodos , Subunidad gamma Común de Receptores de Interleucina/genética , Subunidad gamma Común de Receptores de Interleucina/metabolismo , Ratones , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA