Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
ACS Appl Mater Interfaces ; 12(20): 22751-22759, 2020 May 20.
Article En | MEDLINE | ID: mdl-32347092

PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost, solution-processable solar energy harvesting device and demonstrated good air stability and potential for large-scale commercial implementation. PbS QDSCs achieved a record certified efficiency of 12% in 2018 by utilizing an n+-n-p device structure. However, the p-type layer has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol (EDT) that is used to modify the quantum dot (QD) surface. The low carrier mobility of EDT naturally limits the device thickness as the carrier diffusion length is limited by the low mobility. Herein, we improve the properties of the p-type layer through a two-step hybrid organic ligand treatment. By treating the p-type layer with two types of ligands, 3-mercaptopropionic acid (MPA) and EDT, the PbS QD surface was passivated by a combination of the two ligands, resulting in an overall improvement in open-circuit voltage, fill factor, and current density, leading to an improvement in the cell efficiency from 7.0 to 10.4% for the champion device. This achievement was a result of the improved QD passivation and a reduction in the interdot distance, improving charge transport through the p-type PbS quantum dot film.

2.
Inorg Chem ; 57(4): 2132-2140, 2018 Feb 19.
Article En | MEDLINE | ID: mdl-29411977

PbS submicron crystals were formed by thermolysis of two different lead dithiocarbamate complexes. These precursors were readily synthesized and fully characterized, and in situ synchrotron powder diffraction experiments were performed to characterize their decomposition. The structure and purity of resultant PbS was examined using scanning electron and transmission electron microscopies, powder X-ray diffraction, and infrared spectroscopy. Submicron crystalline PbS was used to create a new PbS thermistor with excellent sensitivity and an ultrarapid thermal response time.

3.
Appl Opt ; 56(31): 8699-8709, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-29091684

A generalized four-flux method capable of modeling and tuning the spectral reflectance of a diverse range of complex composite coatings is presented. An example application is exploring and maximizing the visible and near-infrared (IR) spectral reflectance available from the diverse structures arising from combinations of the many practical paint ingredients that are available or can be made when applied to different substrates. This requires consideration of scatterers that can differ in composition, particle size, size distribution, and fill factor, and are held in place by a variety of organic binders, which typically partially absorb in the near IR. This extended model is further enhanced by an explicit matrix algorithm that allows analysis of diverse multilayer stacks. This is applied to a multilayer and is designed to model useful changes that result from varying the pigment fill factor as a function of depth within a layer. What we believe is a novel feature is the way the scattering affects matrix absorptance. The model includes contributions to total absorptance from the scattering pigments and from the paint binder that can arise in different bands or simultaneously at the same wavelengths. Model accuracy is demonstrated by example results when compared to experimental data on dried single layer paint profiles using imaged cross sections. The model input covering the actual pigment and binder properties used are material, shape, size, and size distributions, mass added, and the measured optical constants from 400 nm to 2,500 nm of the undoped binder resin layer. One interesting result is the comparison of a two-layered stack, with bigger particles in the first layer and smaller ones in the second, to one with the opposite depth profile.

4.
Nanotechnology ; 27(21): 215702, 2016 May 27.
Article En | MEDLINE | ID: mdl-27087638

A gold nanoparticle (AuNP) ruthenium phthalocyanine (RuPc) nanocomposite has been synthesised that exhibits high thermal stability. Electrical resistance measurements revealed that the nanocomposite is stable up to ∼320 °C. Examination of the nanocomposite and the RuPc stabiliser complex using thermogravimetric analysis and differential scanning calorimetry show that the remarkable thermal stability is due to the RuPc molecules, which provide an effective barrier to sintering of the AuNPs.

5.
Adv Sci (Weinh) ; 2(9): 1500119, 2015 Sep.
Article En | MEDLINE | ID: mdl-27980975

A novel material open to warm air stays below ambient temperature under maximum solar intensities of mid-summer. It is found to be 11 °C cooler than a commercial white cool roof nearby. A combination of specially chosen polymers and a silver thin film yields values near 100% for both solar reflectance, and thermal emittance at infrared wavelengths from 7.9 to 13 µm.

...