Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 25(9): 104925, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35992305

RESUMEN

Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection. This analysis revealed 389 small molecules with micromolar to low nanomolar activities, representing >12 scaffold classes and 813 host targets. Representatives were evaluated for mechanism of action in stable and primary human cell models with SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of host factor dependencies and treatments for viral diseases.

2.
bioRxiv ; 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33907750

RESUMEN

Identification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection. This analysis revealed 389 small molecules, >12 scaffold classes and 813 host targets with micromolar to low nanomolar activities. From these classes, representatives were extensively evaluated for mechanism of action in stable and primary human cell models, and additionally against Beta and Delta SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of novel host factor dependencies and treatments for viral diseases.

3.
Biochem Biophys Rep ; 18: 100621, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30899803

RESUMEN

Inhibition of animal cell phospholipid biosynthesis has been proposed for anticancer and antiviral therapies. Using CHO-K1 derived cell lines, we have developed and used a cell-based high-throughput procedure to screen a 1280 compound, small molecule library for inhibitors of phospholipid biosynthesis. We identified tyrphostin AG 879 (AG879), which inhibited phospholipid biosynthesis by 85-90% at a concentration of 10 µM, displaying an IC50 of 1-3 µM. The synthesis of all phospholipid head group classes was heavily affected. Fatty acid biosynthesis was also dramatically inhibited (90%). AG879 inhibited phospholipid biosynthesis in all additional cell lines tested, including MDCK, HUH7, Vero, and HeLa cell lines. In CHO cells, AG879 was cytostatic; cells survived for at least four days during exposure and were able to divide following its removal. AG879 is an inhibitor of receptor tyrosine kinases (RTK) and inhibitors of signaling pathways known to be activated by RTK's also inhibited phospholipid biosynthesis. We speculate that inhibition of RTK by AG879 results in an inhibition of fatty acid biosynthesis with a resulting decrease in phospholipid biosynthesis and that AG879's effect on fatty acid synthesis and/or phospholipid biosynthesis may contribute to its known capacity as an effective antiviral/anticancer agent.

4.
Hum Vaccin ; 5(2): 79-84, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18670196

RESUMEN

Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein that facilitates the transfer of neutral lipids and phospholipids between lipoproteins and contributes to the regulation of the plasma concentration of high density lipoprotein cholesterol (HDL-C). Vaccines have been developed that elicit antibodies that bind to and reduce the lipid transfer function of CETP as a way to increase the plasma concentration of HDL-C and prevent or treat atherosclerosis. This study assessed the immunogenicity of two vaccine peptides. The first, CETi-1, is a dimerized synthetic peptide, including residues 461-476 of human CETP and residues 830-843 of tetanus toxoid, TT(830-843). The second, PADRE-CETP, is a monomeric peptide, in which a PADRE T cell epitope (aK-Cha-VAAWTLKAa) replaces the TT(830-843) T cell epitope of CETi-1. Both peptides were formulated with aluminum-containing adjuvants (Alhydrogel), and tested in mice and rabbits with or without the co-administration of the investigational TLR9 agonist VaxImmune (CPG 7909). In both mice and rabbits, the vaccine peptide utilizing the PADRE T cell epitope elicited stronger anti-CETP antibody responses than the CETi-1 vaccine. Also, co-administration of VaxImmune enhanced the anti-CETP antibody responses to both vaccines. Isotype analysis of the murine anti-CETP antibody response to both vaccines demonstrated a switch from IgG1 to IgG2a upon co-administration of VaxImmune. We conclude that (1) the PADRE T cell epitope is more potent than the TT(830-843) epitope in providing help for the anti-CETP antibody response; and (2) co-administration of VaxImmune with either vaccine increased immunogenicity as measured by antibody response.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Aterosclerosis/prevención & control , Aterosclerosis/terapia , Proteínas de Transferencia de Ésteres de Colesterol/inmunología , Oligodesoxirribonucleótidos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Hidróxido de Aluminio/administración & dosificación , Hidróxido de Aluminio/farmacología , Animales , Anticuerpos/sangre , Femenino , Humanos , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Oligodesoxirribonucleótidos/farmacología , Conejos , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...