Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotoxicology ; 90: 48-61, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227730

RESUMEN

Neurotoxicants may be widespread in the environment and can produce serious health impacts in the human population. Screening programs that use in vitro methods have generated data for thousands of chemicals. However, these methods often do not evaluate repeated or prolonged exposures, which are required for many neurotoxic outcomes. Additionally, the data produced by such screening methods may not include mechanisms which play critical biological roles necessary for in vivo neurotoxicity. The Hard and Soft Acids and Bases (HSAB) in silico model focuses on chemical structure and electrophilic properties which are important to the formation of protein adducts. A group of structurally diverse chemicals have been evaluated with an in silico screening approach incorporating HSAB parameters. However, the predictions from the expanded chemical space have not been evaluated using in vivo methods. Three chemicals predicted to be cumulative toxicants were selected for in vivo neurotoxicological testing. Adult male Long-Evans rats were treated orally with citronellal (CIT), 3,4-dichloro-1-butene (DCB), or benzyl bromoacetate (BBA) for 8 weeks. Behavioral observations were recorded weekly to assess motor function. Peripheral neurophysiological measurements were derived from nerve excitability (NE) tests which involved compound muscle action potentials (CMAPs) in the tail and foot, and mixed nerve action potentials (MNAPs) in the tail. Compound nerve action potentials (CNAPs) and nerve conduction velocity (NCV) in the tail were also quantified. Peripheral inputs into the central nervous system were examined using somatosensory evoked potentials recorded from the cortex (SEPCTX) and cerebellum (SEPCEREB). CIT or BBA did not result in significant alterations to peripheral nerve or somatosensory function. DCB reduced grip-strength and altered peripheral nerve function. The MNAPs required less current to reach 50% amplitude and had a lower calculated rheobase, suggesting increased excitability. Increased CNAP amplitudes and greater NCV were also observed. Novel changes were found in the SEPCTX with an abnormal peak forming in the early portion of the waveforms of treated rats, and decreased latencies and increased amplitudes were observed in SEPCEREB recordings. These data contribute to testing an expanded chemical space from an in silico HSAB model for predicting cumulative neurotoxicity and may assist with prioritizing chemicals to protect human health.


Asunto(s)
Síndromes de Neurotoxicidad , Nervios Periféricos , Acetatos , Potenciales de Acción , Monoterpenos Acíclicos , Aldehídos , Animales , Hidrocarburos Clorados , Masculino , Conducción Nerviosa , Síndromes de Neurotoxicidad/etiología , Ratas , Ratas Long-Evans
2.
Neurotoxicology ; 79: 95-103, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380191

RESUMEN

Xenobiotic electrophiles can form covalent adducts that may impair protein function, damage DNA, and may lead a range of adverse effects. Cumulative neurotoxicity is one adverse effect that has been linked to covalent protein binding as a Molecular Initiating Event (MIE). This paper describes a mechanistic in silico chemical screening approach for neurotoxicity based on Hard and Soft Acids and Bases (HSAB) theory. We evaluated the applicability of HSAB-based electrophilicity screening protocol for neurotoxicity on 19 positive and 19 negative reference chemicals. These reference chemicals were identified from the literature, using available information on mechanisms of neurotoxicity whenever possible. In silico screening was based on structural alerts for protein binding motifs and electrophilicity index in the range of known neurotoxicants. The approach demonstrated both a high positive prediction rate (82-90 %) and specificity (90 %). The overall sensitivity was relatively lower (47 %). However, when predicting the toxicity of chemicals known or suspected of acting via non-specific adduct formation mechanism, the HSAB approach identified 7/8 (sensitivity 88 %) of positive control chemicals correctly. Consequently, the HSAB-based screening is a promising approach of identifying possible neurotoxins with adduct formation molecular initiating events. While the approach must be expanded over time to capture a wider range of MIEs involved in neurotoxicity, the mechanistic nature of the screen allows users to flag chemicals for possible adduct formation MIEs. Thus, the HSAB based toxicity screening is a promising strategy for toxicity assessment and chemical prioritization in neurotoxicology and other health endpoints that involve adduct formation.


Asunto(s)
Ácidos/toxicidad , Álcalis/toxicidad , Contaminantes Ambientales/toxicidad , Modelos Químicos , Síndromes de Neurotoxicidad/etiología , Neurotoxinas/toxicidad , Ácidos/química , Álcalis/química , Animales , Contaminantes Ambientales/química , Humanos , Concentración de Iones de Hidrógeno , Neurotoxinas/química , Medición de Riesgo , Factores de Riesgo
3.
Chem Biol Interact ; 317: 108961, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978392

RESUMEN

Cisplatin (CisPt) and other platinum (Pt)-based antineoplastic drugs (e.g., carboplatin, oxaliplatin) are highly effective and widely used in the treatment of solid tumors in both pediatric and adult patients. Although considered to be life-saving as a cancer treatment, Pt-based drugs frequently result in dose-limiting toxicities such as chemotherapy-induced peripheral neuropathies (CIPN). Specifically, irreversible damage to outer hair cells and injury of sensory neurons are linked to profound sensorineural hearing loss (ototoxicity), which complicates tumor management and can lead to a poor clinical prognosis. Given the severity of CIPN, substantial effort has been devoted to the development of neuroprotective compounds, regardless clinical results have been underwhelming. It is noteworthy that Pt is a highly reactive electrophile (electron deficient) that causes toxicity by forming adducts with nucleophilic (electron rich) targets on macromolecules. In this regard, we have discovered a series of carbon-based enol nucleophiles; e.g., N-(4-acetyl-3,5-dihydroxyphenyl)-2-oxocytclopentane-1-carboxamide (Gavinol), that can prevent neurotoxicity by scavenging the platinum ion. The chemistry of enol compounds is well understood and mechanistic research has demonstrated the role of this chemistry in cytoprotection. Our cell-derived data were corroborated by calculations of hard and soft, acids and bases (HSAB) parameters that describe the electronic character of interacting electrophiles and nucleophiles. Together, these observations indicate that the respective mechanisms of Pt neurotoxicity and antitumor activity are separable and can therefore be affected independently.


Asunto(s)
Antineoplásicos/efectos adversos , Síndromes de Neurotoxicidad , Compuestos Organoplatinos/toxicidad , Platino (Metal)/toxicidad , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Ratas
4.
Toxicology ; 418: 62-69, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30826385

RESUMEN

Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g., Michael addition, SN2 reactions) are important, not only to Organic Chemistry, but also to the fields of Molecular Biology and Toxicology. Specifically, covalent bond formation is the operational basis of many critically important cellular processes; e.g., enzyme function, neurotransmitter release, and membrane-vesicle fusion. Given this context it is understandable that these reactions are also relevant to Toxicology, since a significant number of xenobiotic chemicals are toxic electrophiles that can react with endogenous nucleophilic residues. Therefore, the purpose of this Review is to discuss electrophile-nucleophile chemistry as it pertains to cell injury and resulting organ toxicity. Our discussion will involve an introduction to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson. The HSAB concept provides a framework for calculation of quantum chemical parameters that classify the electrophile and nucleophile covalent components according to their respective electronic nature (softness/hardness) and reactivity (electrophilicity/nucleophilicity). The calculated quantum indices in conjunction with corroborative in vivo, in chemico (cell free) and in vitro research can offer an illuminating approach to mechanistic discovery. Accordingly, we will provide examples that demonstrate how this approach has been used to discern mechanisms and sites of electrophile action.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Modelos Biológicos , Modelos Moleculares , Xenobióticos/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Contaminantes Ambientales/química , Dureza , Humanos , Conformación Molecular , Medición de Riesgo , Relación Estructura-Actividad , Xenobióticos/química
5.
Chem Biol Interact ; 296: 117-123, 2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30287234

RESUMEN

Phloretin (Phl) is a dihydrochalcone flavonoid with significant cytoprotective properties; e.g., free radical trapping, electrophile scavenging. Based on this, it has been suggested that Phl might be useful in the treatment of pathogenic processes and prevention of drug toxicities. Therefore, we determined the ability of Phl to provide route- and dose-dependent hepatoprotection in a mouse model of acetaminophen (APAP) overdose. Intraperitoneal (i.p.) administration of Phl produced a bimodal effect; i.e., the highest dose (2.40 mmol/kg) did not prevent APAP-induced lethality, whereas lower doses (0.2-0.4 mmol/kg) afforded modest hepatoprotection. When given alone, the highest i.p. Phl dose was lethal within 24 h, whereas the lower doses were not toxic. Oral Phl (0.40-2.40 mmol/kg) did not prevent APAP-induced hepatotoxicity. The highest oral dose given alone (2.4 mmol/kg) produced 64% lethality, whereas lower doses were not lethal. This toxicity profile was reflected in a study using APAP-exposed isolated mouse hepatocytes, which showed that the Phl pharmacophores, 1,3,5-trihydroxyacetophenone (PG) and 2',4',6'-trihydroxyacetophenone (THA) where protective. Corroborative cell free studies showed that polyphenol protectants prevented glutathione loss mediated by the APAP metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Thus, in spite of possessing cytoprotective attributes, Phl was generally toxic in our APAP models. These and earlier findings suggest that Phl is not a candidate for drug design. In contrast, we have found that the enol-forming pharmacophores, THA and PG, are potential platforms for pharmacotherapeutic development.


Asunto(s)
Citoprotección/efectos de los fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Floretina/farmacología , Sustancias Protectoras/farmacología , Animales , Benzoquinonas/farmacología , Relación Dosis-Respuesta a Droga , Glutatión/antagonistas & inhibidores , Glutatión/metabolismo , Hepatocitos/patología , Iminas/farmacología , Inyecciones Intraperitoneales , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Floretina/administración & dosificación , Floretina/química , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Relación Estructura-Actividad
6.
Chem Res Toxicol ; 29(12): 2096-2107, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989140

RESUMEN

Evidence from laboratory studies and clinical trials suggests that plant-derived polyphenolic compounds such as curcumin, resveratrol, or phloretin might be useful in the treatment of certain diseases (e.g., Alzheimer's disease) and acute tissue injury states (e.g., spinal cord trauma). However, despite this potential, the corresponding chemical instability, toxic potential, and low bioavailability of these compounds could limit their ultimate clinical relevance. We have shown that pharmacophores of curcumin (e.g., 2-acetylcyclopentanone) and phloretin (e.g., 2',4',6'-trihydroxyacetophenone; THA) can provide cytoprotection in cell culture and animal models of oxidative stress injury. These pharmacophores are 1,3-dicarbonyl and polyphenol derivatives, the enol groups of which can ionize in biological solutions to form an enolate. This carbanionic moiety can chelate metal ions and, as a nucleophile, can scavenge toxic electrophiles (e.g., acrolein, 4-hydroxy-2-nonenal, and N-acetyl-p-benzoquinone imine) involved in many pathogenic conditions. Aromatic derivatives such as THA can also trap free oxygen and nitrogen radicals and thereby provide another layer of cytoprotection. The multifunctional character of these enolate-forming compounds suggests an ability to block pathogenic processes (e.g., oxidative stress) at several steps. The purpose of this review is to discuss research supporting our theory that enolate formation is a significant cytoprotective property that represents a platform for development of pharmacotherapeutic approaches to a variety of toxic and pathogenic conditions. Our discussion will focus on mechanism and structure-activity studies that define enolate chemistry and their corresponding relationships to cytoprotection.


Asunto(s)
Citoprotección , Animales , Células Cultivadas , Hepatocitos/citología , Estrés Oxidativo , Polifenoles/química , Relación Estructura-Actividad
7.
Chem Biol Interact ; 254: 198-206, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27288850

RESUMEN

Human populations are exposed to complex environmental mixtures of acrolein, methylvinyl ketone (MVK) and other type-2 alkenes. Many members of this chemical class are electrophiles that possess a common molecular mechanism of toxicity; i.e., protein inactivation via formation of stable cysteine adducts. Therefore, acute or chronic exposure to type-2 alkene mixtures could represent a health risk due to additive or synergistic interactions among component chemicals. Despite this risk, there is little experimental information regarding the joint effects of type-2 alkenes. In the present study we used sum of toxic units (TUsum = ∑TUi) to assess the relative toxicity of different type-2 alkene mixtures. These studies involved well characterized environmental type-2 alkene toxicants and included amide (acrylamide; ACR), ketone (methyl vinyl ketone; MVK), aldehyde (2-ethylacrolein; EA) and ester (methyl acrylate; MA) derivatives. In chemico analyses revealed that both binary and ternary mixtures could deplete thiol groups according to an additive joint effect at equitoxic and non-equitoxic ratios; i.e., TUsum = 1.0 ± 0.20. In contrast, analyses of joint effects in SNB19 cell cultures indicated that different permutations of type-2 alkene mixtures produced mostly synergistic joint effects with respect to cell lethality; i.e., TUsum < 0.80. A mixture of ACR and MA was shown to produce joint toxicity in a rat model. This mixture accelerated the onset and development of neurotoxicity relative to the effects of the individual toxicants. Synergistic effects in biological models might occur when different cellular proteomes are targeted, whereas additive effects develop when the mixtures encompasses a similar proteome.


Asunto(s)
Alquenos/toxicidad , Apoptosis/efectos de los fármacos , Acrilamida/toxicidad , Aldehídos/química , Aldehídos/toxicidad , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Cetonas/química , Cetonas/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley
8.
J Pharmacol Exp Ther ; 357(3): 476-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27029584

RESUMEN

Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2',4',6'-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis.


Asunto(s)
Acetaminofén/metabolismo , Acetaminofén/toxicidad , Benzoquinonas/metabolismo , Citoprotección/efectos de los fármacos , Iminas/metabolismo , Hígado/efectos de los fármacos , Floretina/farmacología , Animales , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Floretina/metabolismo
9.
J Pharmacol Exp Ther ; 353(1): 150-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25659651

RESUMEN

We have previously shown that 2-acetylcyclopentanone (2-ACP), an enolate-forming 1,3-dicarbonyl compound, provides protection in cell culture and animal models of oxidative stress. The pathophysiology of ischemia-reperfusion injury (IRI) involves oxidative stress, and, therefore, we determined the ability of 2-ACP to prevent this injury in a rat liver model. IRI was induced by clamping the portal vasculature for 45 minutes (ischemia phase), followed by recirculation for 180 minutes (reperfusion phase). This sequence was associated with substantial derangement of plasma liver enzyme activities, histopathological indices, and markers of oxidative stress. The 2-ACP (0.80-2.40 mmol/kg), administered by intraperitoneal injection 10 minutes prior to reperfusion, provided dose-dependent cytoprotection, as indicated by normalization of the IRI-altered liver histologic and biochemical parameters. The 2-ACP (2.40 mmol/kg) was also hepatoprotective when injected before clamping the circulation (ischemia phase). In contrast, an equimolar dose of N-acetylcysteine (2.40 mmol/kg) was not hepatoprotective when administered prior to reperfusion. Our studies to date suggest that during reperfusion the enolate nucleophile of 2-ACP limits the consequences of mitochondrial-based oxidative stress through scavenging unsaturated aldehyde electrophiles (e.g., acrolein) and chelation of metal ions that catalyze the free radical-generating Fenton reaction. The ability of 2-ACP to reduce IRI when injected prior to ischemia most likely reflects the short duration of this experimental phase (45 minutes) and favorable pharmacokinetics that maintain effective 2-ACP liver concentrations during subsequent reperfusion. These results provide evidence that 2-ACP or an analog might be useful in treating IRI and other conditions that have oxidative stress as a common molecular etiology.


Asunto(s)
Cetonas/farmacología , Hígado/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Aldehídos/química , Aldehídos/metabolismo , Animales , Citoprotección , Calor , Cetonas/uso terapéutico , Hígado/irrigación sanguínea , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo , Teoría Cuántica , Ratas Sprague-Dawley , Daño por Reperfusión/patología , Succinato Deshidrogenasa/metabolismo
10.
J Pharmacol Exp Ther ; 346(2): 259-69, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23759509

RESUMEN

Our previous research showed that enolates formed from 1,3-dicarbonyl compounds, such as 2-acetylcyclopentanone (2-ACP), could provide protection in cell culture models from electrophile- or oxidative stress-induced toxicity. In the present study, we evaluated the protective abilities of 2-ACP in a mouse model of acetaminophen (APAP) hepatotoxicity. Results show that oral APAP overdose (500 mg/kg) was nearly 90% lethal within 72 hours and that the resulting hepatotoxicity was associated with substantial changes in plasma liver enzyme activities, histopathological indices, and markers of hepatocyte oxidative stress. 2-ACP administered intraperitoneally 20 minutes before APAP completely prevented lethality over a 7-day observation period. This effect was dose-dependent (0.80-2.40 mmol/kg) and was correlated with normalization of measured parameters. Nearly complete protection was afforded when 2-ACP was administered 20 minutes post-APAP, but not 60 minutes after intoxication. Although intraperitoneal administration of N-acetylcysteine (NAC) was not effective over a broad dose range (2.40-7.20 mmol/kg), temporal studies indicated that intraperitoneal NAC was hepatoprotective when injected 60 minutes after APAP intoxication. Because of a loss of function in stomach acid, oral administration of 2-ACP was associated with modest APAP protection. In contrast, NAC administered orally provided dose-dependent (0.80-2.40 mmol/kg) protection against APAP hepatotoxicity. In chemico studies and quantum mechanical calculations indicated that 2-ACP acted as a surrogate nucleophilic target for the reactive electrophilic APAP metabolite N-acetyl-p-benzoquinone imine. Our findings suggest that 2-ACP or a derivative might be useful in treating acquired toxicities associated with electrophilic drugs and metabolites or environmental toxicants.


Asunto(s)
Acetaminofén/envenenamiento , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Cetonas/farmacología , Acetaminofén/administración & dosificación , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Administración Oral , Animales , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inyecciones Intraperitoneales , Cetonas/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Teoría Cuántica
11.
J Neurochem ; 116(1): 132-43, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21054388

RESUMEN

Curcumin, phloretin and structurally related phytopolyphenols have well-described neuroprotective properties that appear to be at least partially mediated by 1,3-dicarbonyl enol substructures that form nucleophilic enolates. Based on their structural similarities, we tested the hypothesis that enolates of simple 1,3-dicarbonyl compounds such as acetylacetone might also possess neuroprotective actions. Our results show that the ß-diketones, particularly 2-acetylcyclopentanone, protected rat striatal synaptosomes and a neuronal cell line from thiol loss and toxicity induced by acrolein, an electrophilic α,ß-unsaturated aldehyde. The 1,3-dicarbonyl compounds also provided substantial cytoprotection against toxicity induced by hydrogen peroxide in a cellular model of oxidative stress. Initial chemical characterization in cell-free systems indicated that the 1,3-dicarbonyl compounds acted as surrogate nucleophilic targets that slowed the rate of sulfhydryl loss caused by acrolein. Although the selected 1,3-dicarbonyl congeners did not scavenge free radicals, metal ion chelation was a significant property of both acetylacetone and 2-acetylcyclopentanone. Our data suggest that the 1,3-dicarbonyl enols represent a new class of neuroprotectants that scavenge electrophilic metal ions and unsaturated aldehydes through their nucleophilic enolate forms. As such, these enols might be rational candidates for treatment of acute or chronic neurodegenerative conditions that have oxidative stress as a common molecular etiology.


Asunto(s)
Curcumina/análogos & derivados , Cetonas/química , Fármacos Neuroprotectores/química , Animales , Línea Celular Tumoral , Curcumina/clasificación , Curcumina/farmacología , Cetonas/farmacología , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/clasificación , Fármacos Neuroprotectores/farmacología , Polifenoles/química , Polifenoles/clasificación , Polifenoles/farmacología , Ratas , Ratas Sprague-Dawley
12.
Toxicol Sci ; 107(1): 171-81, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18996889

RESUMEN

4-Hydroxy-2-nonenal (HNE) is an aldehyde by-product of lipid peroxidation that is presumed to play a primary role in certain neuropathogenic states (e.g., Alzheimer disease, spinal cord trauma). Although the molecular mechanism of neurotoxicity is unknown, proteomic analyses (e.g., tandem mass spectrometry) have demonstrated that this soft electrophile preferentially forms Michael-type adducts with cysteine sulfhydryl groups. In this study, we characterized HNE synaptosomal toxicity and evaluated the role of putative nucleophilic amino acid targets. Results show that HNE exposure of striatal synaptosomes inhibited (3)H-dopamine membrane transport and vesicular storage. These concentration-dependent effects corresponded to parallel decreases in synaptosomal sulfhydryl content. Calculations of quantum mechanical parameters (softness, electrophilicity) that describe the interactions of an electrophile with its nucleophilic target indicated that the relative softness of HNE was directly related to both the second-order rate constant (k(2)) for sulfhydryl adduct formation and corresponding neurotoxic potency (IC(50)). Computation of additional quantum mechanical parameters that reflect the relative propensity of a nucleophile to interact with a given electrophile (chemical potential, nucleophilicity) indicated that the sulfhydryl thiolate state was the HNE target. In support of this, we showed that the rate of adduct formation was related to pH and that N-acetyl-L-cysteine, but not N-acetyl-L-lysine or beta-alanyl-L-histidine, reduced in vitro HNE neurotoxicity. These data suggest that, like other type 2 alkenes, HNE produces nerve terminal toxicity by forming adducts with sulfhydryl thiolates on proteins involved in neurotransmission.


Asunto(s)
Aldehídos/farmacología , Cuerpo Estriado/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Acetilcisteína/farmacología , Acroleína/farmacología , Aminoácidos/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Carnosina/metabolismo , Cuerpo Estriado/citología , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Masculino , Mecánica , Dinámicas no Lineales , Estrés Oxidativo/efectos de los fármacos , Farmacocinética , Ratas , Ratas Sprague-Dawley , Análisis de Regresión , Compuestos de Sulfhidrilo/metabolismo , Sinaptosomas/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Tritio/metabolismo
13.
Toxicol Sci ; 98(2): 561-70, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17519395

RESUMEN

Conjugated Type-2 alkenes, such as acrylamide (ACR), are soft electrophiles that produce neurotoxicity by forming adducts with soft nucleophilic sulfhydryl groups on proteins. Soft-soft interactions are governed by frontier molecular orbital characteristics and can be defined by quantum mechanical parameters such as softness (sigma) and chemical potential (mu). The neurotoxic potency of ACR is likely related to the rate of adduct formation, which is reflected in values of sigma. Correspondingly, differences in mu, the ability of a nucleophile to transfer electrons to an electrophile, could determine protein targets of these chemicals. Here, sigma and mu were calculated for a series of structurally similar Type-2 alkenes and their potential sulfhydryl targets. Results show that N-ethylmaleimide, acrolein and methylvinyl ketone were softer electrophiles than methyl acrylate or ACR. Softness (sigma) was closely correlated to corresponding second-order rate constants (k(2)) for electrophile reactions with sulfhydryl groups on N-acetyl-L-cysteine (NAC). The rank order of softness was also directly related to neurotoxic potency as determined by impairment of synaptosomal function and sulfhydryl loss. Calculations of mu showed that the thiolate state of several cysteine analogs was the preferred nucleophilic target of alkene electrophiles. In addition, mu was directly related to the thiolate rate constant (k) for the reaction of the Type-2 alkenes with the cysteine compounds. Finally, in accordance with respective mu values, we found that NAC, but not N-acetyl-L-lysine, protected synaptosomes from toxicity. These findings suggest that the neurotoxicity of ACR and its conjugated alkene analogs is related to electrophilic softness and that the thiolate state of cysteine residues is the corresponding adduct target.


Asunto(s)
Alquenos/toxicidad , Cisteína/análogos & derivados , Cisteína/farmacología , Síndromes de Neurotoxicidad/metabolismo , 1-Propanol/toxicidad , Acroleína/toxicidad , Acrilamida/toxicidad , Acrilatos/toxicidad , Animales , Butanonas/toxicidad , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Etilmaleimida/toxicidad , Masculino , Síndromes de Neurotoxicidad/etiología , Propanoles/toxicidad , Teoría Cuántica , Ratas , Ratas Sprague-Dawley , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
14.
Toxicol Sci ; 95(1): 136-46, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17023561

RESUMEN

Acrylamide (ACR) is a conjugated type-2 alkene that produces synaptic toxicity presumably by sulfhydryl adduction. The alpha,beta-unsaturated carbonyl of ACR is a soft electrophile and, therefore, adduction of nucleophilic thiol groups could occur through a conjugate (Michael) addition reaction. To address the mechanism of thiol adduct formation and corresponding neurotoxicological importance, we defined structure-toxicity relationships among a series of conjugated type-2 alkenes (1 microM-10mM), which included acrolein and methylvinyl ketone. Results show that exposure of rat striatal synaptosomes to these chemicals produced parallel, concentration-dependent neurotoxic effects that were correlated to loss of free sulfhydryl groups. Although differences in relative potency were evident, all conjugated analogs tested were equiefficacious with respect to maximal neurotoxicity achieved. In contrast, nonconjugated alkene or aldehyde congeners did not cause synaptosomal dysfunction or sulfhydryl loss. Acrolein and other alpha,beta-unsaturated carbonyls are bifunctional (electrophilic reactivity at the C-1 and C-3 positions) and could produce in vitro neurotoxicity by forming protein cross-links rather than thiol monoadducts. Immunoblot analysis detected slower migrating, presumably derivatized, synaptosomal proteins only at very high acrolein concentrations (>or= 25 mM). Exposure of synaptosomes to high concentrations of ACR (1M), N-ethylmaleimide (10mM), and methyl vinyl ketone (MVK) (100mM) did not alter the gel migration of synaptosomal proteins. Furthermore, hydralazine (1mM), which blocks the formation of protein cross-links, did not affect in vitro acrolein neurotoxicity. Thus, type-2-conjugated alkenes produced synaptosomal toxicity that was linked to a loss of thiol content. This is consistent with our hypothesis that the mechanism of ACR neurotoxicity involves formation of Michael adducts with protein sulfhydryl groups.


Asunto(s)
Alquenos/toxicidad , Encéfalo/efectos de los fármacos , Proteínas de la Fusión de la Membrana/metabolismo , Neuronas/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Reactivos de Sulfhidrilo/toxicidad , Acroleína/toxicidad , Acrilamida/toxicidad , Acrilatos/toxicidad , Aldehídos/toxicidad , Alquenos/química , Compuestos Alílicos/toxicidad , Animales , Western Blotting , Encéfalo/metabolismo , Butanonas/toxicidad , Reactivos de Enlaces Cruzados/toxicidad , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Etilmaleimida/toxicidad , Hidralazina/farmacología , Técnicas In Vitro , Masculino , Neuronas/metabolismo , Propanoles/toxicidad , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Reactivos de Sulfhidrilo/química , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...