Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Cell ; 187(8): 1853-1873.e15, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38574728

RESUMEN

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.


Asunto(s)
Biomarcadores , Microbioma Gastrointestinal , Trastornos del Neurodesarrollo , Niño , Femenino , Humanos , Lactante , Embarazo , Trastorno del Espectro Autista/microbiología , Estudios Longitudinales , Estudios Prospectivos , Heces/microbiología , Trastornos del Humor/microbiología
2.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629947

RESUMEN

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Asunto(s)
Nitratos , Fotólisis , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Humedad , Malonatos/química , Contaminantes Atmosféricos/química
3.
J Am Chem Soc ; 146(12): 8327-8334, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488457

RESUMEN

There is now much evidence that OH radicals and H2O2 are spontaneously generated at the air-water interface of atmospheric aerosols. Here, we investigated the effect of halide anions (Cl-, Br-, I-), which are abundant in marine aerosols, on this H2O2 production. Droplets were generated via nebulization of water solutions containing Na2SO4, NaCl, NaBr, and NaI containing solutions, and H2O2 was monitored as a function of the salt concentration under atmospheric relevant conditions. The interfacial OH radical formation was also investigated by adding terephthalic acid (TA) to our salt solutions, and the product of its reaction with OH, hydroxy terephthalic acid (TAOH), was monitored. Finally, a mechanistic investigation was performed to examine the reactions participating in H2O2 production, and their respective contributions were quantified. Our results showed that only Br- contributes to the interfacial H2O2 formation, promoting the production by acting as an electron donor, while Na2SO4 and NaCl stabilized the droplets by only reducing their evaporation. TAOH was observed in the collected droplets and, for the first time, directly in the particle phase by means of online fluorescence spectroscopy, confirming the interfacial OH production. A mechanistic study suggests that H2O2 is formed by both OH and HO2 self-recombination, as well as HO2 reaction with H atoms. This work is expected to enhance our understanding of interfacial processes and assess their impact on climate, air quality, and health.

4.
Environ Sci Technol ; 58(16): 7099-7112, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536960

RESUMEN

Reduced nitrogen-containing organic compounds (NOCs) in aerosols play a crucial role in altering their light-absorption properties, thereby impacting regional haze and climate. Due to the low concentration levels of individual NOCs in the air, the utilization of accurate detection and quantification technologies becomes essential. For the first time, this study investigated the diurnal variation, chemical characteristics, and potential formation pathways of NOCs in urban ambient aerosols in Shanghai using a versatile aerosol concentration enrichment system (VACES) coupled with HPLC-Q-TOF-MS. The results showed that NOCs accounted over 60% of identified components of urban organic aerosols, with O/N < 3 compounds being the major contributors (>70%). The predominance of the positive ionization mode suggested the prevalence of reduced NOCs. Higher relative intensities and number fractions of NOCs were observed during nighttime, while CHO compounds showed an opposite trend. Notably, a positive correlation between the intensity of NOCs and ammonium during the nighttime was observed, suggesting that the reaction of ammonium to form imines may be a potential pathway for the formation of reduced NOCs during the nighttime. Seven prevalent types of reduced NOCs in autumn and winter were identified and characterized by an enrichment of CH2 long-chain homologues. These NOCs included alkyl, cyclic, and aromatic amides in CHON compounds, as well as heterocyclic or cyclic amines and aniline homologue series in CHN compounds, which were associated with anthropogenic activities and may be capable of forming light-absorbing chromophores or posing harm to human health. The findings highlight the significant contributions of both primary emissions and ammonium chemistry, particularly amination processes, to the pollution of reduced NOCs in Shanghai's atmosphere.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Atmósfera , China , Atmósfera/química , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos/análisis , Monitoreo del Ambiente , Nitrógeno/análisis
5.
iScience ; 26(11): 108317, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026147

RESUMEN

Nitrogenous organic (CHON), crucial for secondary organic aerosol (SOA), forms through poorly studied mechanisms in clouds. Our study explores CHON transformation during cloud processes (CPs). These processes play a vital role in enhancing the variety of CHONs, leading to the formation of CHONs with oxygen atom counts ranging from 1 to 10 and double bond equivalent (DBE) values spanning from 2 to 10. We proposed that the CHONs formed during CPs are formed through aqueous phase reactions with CHO compound precursors via nucleophilic attacks by NH3. This scheme can be account for roughly three-quarters of the CHONs by number in cloud water, and near two-thirds of all CHONs are formed through reactions between NH3 and carbonyl-containing biogenic volatile organic compound (BVOC) ozonolysis intermediates. This study provides the first insights into the evolution of CHONs during CPs and reveals the significant roles of CPs in the formation of CHONs.

6.
Environ Sci Technol ; 57(45): 17363-17373, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37903215

RESUMEN

Ground subsidence caused by permafrost thawing causes the formation of thermokarst ponds, where organic compounds from eroding permafrost accumulate. We photolyzed water samples from two such ponds in Northern Quebec and discovered the emission of volatile organic compounds (VOCs) using mass spectrometry. One pond near peat-covered permafrost mounds was organic-rich, while the other near sandy mounds was organic-poor. Compounds up to C10 were detected, comprising the atoms of O, N, and S. The main compounds were methanol, acetaldehyde, and acetone. Hourly VOC fluxes under actinic fluxes similar to local solar fluxes might reach up to 1.7 nmol C m-2 s-1. Unexpectedly, the fluxes of VOCs from the organic-poor pond were greater than those from the organic-rich pond. We suggest that different segregations of organics at the air/water interface may partly explain this observation. This study indicates that sunlit thermokarst ponds are a significant source of atmospheric VOCs, which may affect the environment and climate via ozone and aerosol formation. Further work is required for understanding the relationship between the pond's organic composition and VOC emission fluxes.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Hielos Perennes , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Estanques/análisis , Luz Solar , Ozono/análisis , Agua , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , China
7.
Environ Sci Technol ; 57(41): 15580-15587, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37804225

RESUMEN

We present experimental evidence that atomic and molecular iodine, I and I2, are produced spontaneously in the dark at the air-water interface of iodide-containing droplets without any added catalysts, oxidants, or irradiation. Specifically, we observe I3- formation within droplets, and I2 emission into the gas phase from NaI-containing droplets over a range of droplet sizes. The formation of both products is enhanced in the presence of electron scavengers, either in the gas phase or in solution, and it clearly follows a Langmuir-Hinshelwood mechanism, suggesting an interfacial process. These observations are consistent with iodide oxidation at the interface, possibly initiated by the strong intrinsic electric field present there, followed by well-known solution-phase reactions of the iodine atom. This interfacial chemistry could be important in many contexts, including atmospheric aerosols.


Asunto(s)
Yodo , Agua , Agua/química , Yoduros/química , Yodo/química
8.
Environ Sci Technol ; 57(43): 16424-16434, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844023

RESUMEN

Mitigating ammonia (NH3) emissions is a significant challenge, given its well-recognized role in the troposphere, contributing to secondary particle formation and impacting acid rain. The difficulty arises from the highly uncertain attribution of atmospheric NH3 to specific emission sources, especially when accounting for diverse environments and varying spatial and temporal scales. In this study, we established a refined δ15N fingerprint for eight emission sources, including three previously overlooked sources of potential importance. We applied this approach in a year-long case study conducted in urban and rural sites located only 40 km apart in the Shandong Peninsula, North China Plain. Our findings highlight that although atmospheric NH3 concentrations and seasonal trends exhibited similarities, their isotopic compositions revealed significant distinctions in the primary NH3 sources. In rural areas, although agriculture emerged as the dominant emission source (64.2 ± 19.5%), a previously underestimated household stove source also played a considerably greater role, particularly during cold seasons (36.5 ± 12.5%). In urban areas, industry and traffic (33.5 ± 15.6%) and, surprisingly, sewage treatment (27.7 ± 11.3%) associated with high population density were identified as the major contributors. Given the relatively short lifetime of atmospheric NH3, our findings highlight the significance of the isotope approach in offering a more comprehensive understanding of localized and seasonal influences of NH3 sources compared to emissions inventories. The refined isotopic fingerprint proves to be an effective tool in distinguishing source contributions across spatial and seasonal scales, thereby providing valuable insights for the development of emission mitigation policies aimed at addressing the increasing NH3 burden on the local atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Amoníaco/análisis , Estaciones del Año , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , China
9.
Front Microbiol ; 14: 1201064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547696

RESUMEN

Despite the advent of third-generation sequencing technologies, modern bacterial ecology studies still use Illumina to sequence small (~400 bp) hypervariable regions of the 16S rRNA SSU for phylogenetic classification. By sequencing a larger region of the rRNA gene operons, the limitations and biases of sequencing small portions can be removed, allowing for more accurate classification with deeper taxonomic resolution. With Nanopore sequencing now providing raw simplex reads with quality scores above Q20 using the kit 12 chemistry, the ease, cost, and portability of Nanopore play a leading role in performing differential bacterial abundance analysis. Sequencing the near-entire rrn operon of bacteria and archaea enables the use of the universally conserved operon holding evolutionary polymorphisms for taxonomic resolution. Here, a reproducible and validated pipeline was developed, RRN-operon Enabled Species-level Classification Using EMU (RESCUE), to facilitate the sequencing of bacterial rrn operons and to support import into phyloseq. Benchmarking RESCUE showed that fully processed reads are now parallel or exceed the quality of Sanger, with median quality scores of approximately Q20+, using the R10.4 and Guppy SUP basecalling. The pipeline was validated through two complex mock samples, the use of multiple sample types, with actual Illumina data, and across four databases. RESCUE sequencing is shown to drastically improve classification to the species level for most taxa and resolves erroneous taxa caused by using short reads such as Illumina.

10.
Proc Natl Acad Sci U S A ; 120(35): e2302048120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603738

RESUMEN

Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.

11.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155894

RESUMEN

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

12.
Cancers (Basel) ; 15(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37173911

RESUMEN

A common severe neurotoxic side effect of breast cancer (BC) therapy is chemotherapy-induced peripheral neuropathy (CIPN) and intervention is highly needed for the detection, prevention, and treatment of CIPN at an early stage. As the eye is susceptible to neurotoxic stimuli, the present study aims to determine whether CIPN signs in paclitaxel-treated BC patients correlate with ocular changes by applying advanced non-invasive biophotonic in vivo imaging. Patients (n = 14, 10 controls) underwent monitoring sessions after diagnosis, during, and after therapy (T0-T3). Monitoring sessions included general anamnesis, assessment of their quality of life, neurological scores, ophthalmological status, macular optical coherence tomography (OCT), and imaging of their subbasal nerve plexus (SNP) by large-area confocal laser-scanning microscopy (CLSM). At T0, no significant differences were detected between patients and controls. During treatment, patients' scores significantly changed while the greatest differences were found between T0 and T3. None of the patients developed severe CIPN but retinal thickenings could be detected. CLSM revealed large SNP mosaics with identical areas while corneal nerves remained stable. The study represents the first longitudinal study combining oncological examinations with advanced biophotonic imaging techniques, demonstrating a powerful tool for the objective assessment of the severity of neurotoxic events with ocular structures acting as potential biomarkers.

13.
Environ Sci Technol ; 57(15): 6085-6094, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014236

RESUMEN

Recently, secondary organic aerosols (SOAs) emerged as a predominant component of fine particulate matter. However, the pathogenic mechanism(s) of SOAs are still poorly understood. Herein, we show that chronic exposure of mice to SOAs resulted in lung inflammation and tissue destruction. Histological analyses found lung airspace enlargement associated with massive inflammatory cell recruitment predominated by macrophages. Concomitant with such cell influx, our results found changes in the levels of a series of inflammatory mediators in response to SOA. Interestingly, we observed that the expression of the genes encoding for TNF-α and IL-6 increased significantly after one month of exposure to SOAs; mediators that have been largely documented to play a role in chronic pulmonary inflammatory pathologies. Cell culture studies confirmed these in vivo findings. Of importance as well, our study indicates increased matrix metalloproteinase proteolytic activity suggesting its contribution to lung tissue inflammation and degradation. Our work represents the first in vivo study, which reports that chronic exposure to SOAs leads to lung inflammation and tissue injury. Thus, we hope that these data will foster new studies to enhance our understanding of the underlying pathogenic mechanisms of SOAs and perhaps help in the design of therapeutic strategies against SOA-mediated lung injury.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Exposición por Inhalación , Pulmón , Neumonía , Animales , Ratones , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Neumonía/epidemiología , Aerosoles y Gotitas Respiratorias
14.
Proc Natl Acad Sci U S A ; 120(15): e2220228120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011187

RESUMEN

Hydroxyl radical (OH) is a key oxidant that triggers atmospheric oxidation chemistry in both gas and aqueous phases. The current understanding of its aqueous sources is mainly based on known bulk (photo)chemical processes, uptake from gaseous OH, or related to interfacial O3 and NO3 radical-driven chemistry. Here, we present experimental evidence that OH radicals are spontaneously produced at the air-water interface of aqueous droplets in the dark and the absence of known precursors, possibly due to the strong electric field that forms at such interfaces. The measured OH production rates in atmospherically relevant droplets are comparable to or significantly higher than those from known aqueous bulk sources, especially in the dark. As aqueous droplets are ubiquitous in the troposphere, this interfacial source of OH radicals should significantly impact atmospheric multiphase oxidation chemistry, with substantial implications on air quality, climate, and health.

16.
Environ Sci Process Impacts ; 25(3): 382-388, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36789908

RESUMEN

Secondary organic aerosols (SOAs) have emerged recently as a major component of fine particulate matter. Cell culture studies revealed a role for SOAs in cell oxidative stress, toxicity and inflammation and only a few studies investigated short-term SOA exposure in animal models. Here, mice were chronically exposed to naphthalene-derived SOAs for one and two months. Weight monitoring indicated a marked mass loss, especially in females, following chronic exposure to SOAs. Significantly, a cytokine antibody microarray approach revealed SOA-induced abnormal lung inflammation similar to that seen in cigarette smoke-induced chronic obstructive pulmonary disease (COPD). This in vivo study testifies to the pathogenic role of sub-chronic SOA exposure on human health.


Asunto(s)
Neumonía , Aerosoles y Gotitas Respiratorias , Femenino , Ratones , Humanos , Animales , Neumonía/inducido químicamente , Material Particulado/toxicidad , Pérdida de Peso , Estrés Oxidativo
18.
Chemosphere ; 313: 137510, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36495976

RESUMEN

The global importance of abiotic oceanic production of volatile organic compounds (VOCs) still presents a source of high uncertainties related to secondary organic aerosol (SOA) formation. A better understanding of the photochemistry occurring at the ocean-atmosphere interface is particularly important in that regard, as it covers >70% of the Earth's surface. In this work, we focused on the photochemical VOCs production at the air-water interface containing organic material from authentic culture of marine diatom Chaetoceros pseudocurvisetus. Abiotic VOCs production upon irradiation of material originating from total phytoplankton culture as well as the fraction containing only dissolved material was monitored by means of PTR-ToF-MS. Furthermore, isolated dissolved lipid fraction was investigated after its deposition at the air-water interface. All samples acted as a source of VOCs, producing saturated oxygenated compounds such as aldehydes and ketones, as well as unsaturated and functionalized compounds. Additionally, a significant increase in surfactant activity following irradiation experiments observed for all samples implied biogenic material photo-transformation at the air-water interface. The highest VOCs flux normalized per gram of carbon originated from lipid material, and the produced VOCs were introduced into an atmospheric simulation chamber, where particle formation was observed after its gas-phase ozonolysis. This work clearly demonstrates abiotic production of VOCs from phytoplankton derived organic material upon irradiation, facilitated by its presence at the air/water interface, with significant potential for affecting the global climate as a precursor of particle formation.


Asunto(s)
Contaminantes Atmosféricos , Diatomeas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Atmósfera/química , Agua , Aerosoles/análisis , Lípidos , Contaminantes Atmosféricos/análisis
19.
Sci Total Environ ; 857(Pt 1): 159337, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36228802

RESUMEN

Dissolved organic matter (DOM) plays a significant role in the reduction of snow albedo and the acceleration of snowmelt, but its accumulation in snow remains poorly understood. This study investigated the accumulation of DOM in seasonal snow including its accumulation rate, molecular characteristics, and biological and chemical processing. Sixteen snow samples of both fresh and aged snow were collected at one-day interval in Changchun, a typical industrial city in NE China. The snow DOM contents increased linearly with accumulation time at a rate of 30.3 µg L-1 d-1. The optical properties, including fluorescence intensity and optical absorption coefficient, of snowmelt increased exponentially with time owing to the rapid accumulation of terrestrial humic-like fluorophores through snow-soil exchange and deposition of soil-derived substances. Fourier transform-ion cyclotron resonance-mass spectrometry highlighted the properties of DOM at a molecular level, indicating that compounds derived from underlying soil and vascular plants make the largest contribution to DOM. Microbe-derived compounds contribute 35.5 % to the DOM pool. Degrees of saturation and oxidation increase slightly after accumulation, with the impacts of photo- and bio-chemistry on DOM molecules being non-negligible. This study provides a new perspective concerning the accumulation and fate of organic contaminants in snow ecosystems.


Asunto(s)
Ecosistema , Nieve , Materia Orgánica Disuelta , Estaciones del Año , Suelo/química , China , Espectrometría de Fluorescencia , Sustancias Húmicas/análisis
20.
J Wrist Surg ; 11(6): 493-500, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36504534

RESUMEN

Background Dorsal wrist ganglia (DWG) are a common wrist pathology that affects the military population. This study prospectively evaluates push-up performance, functional measures, and patient-reported outcomes 6 months after open DWG excision in active-duty patients. Methods Twenty-seven active-duty patients were enrolled and 18 had complete follow-up. Included patients had DWG diagnosis, unilateral involvement, and no previous surgery. The number of push-ups performed within 2 minutes was measured preoperatively and at 6 months. Range of motion (ROM), grip strength, Pain Catastrophization Scale (PCS), Disabilities of the Arm, Shoulder, and Hand (DASH) score, Mayo Wrist Score, and visual analog scale (VAS) pain score were measured preoperatively and at 2 weeks, 6 weeks, 3 months, and 6 months. Results Push-up performance did not significantly change overall. Wrist flexion, extension, and radial deviation returned to preoperative ranges. Wrist ulnar deviation significantly increased from preoperative range. Grip strength deficit between operative and unaffected extremities significantly improved to 0.7 kg at 6 months from preoperative deficit of 2.7 kg. Mean scores significantly improved for the validated outcome measures-PCS from 6.3 to 0.67, VAS pain scores from 1.37 to 0.18, DASH scores from 12.8 to 4.3, and Mayo Wrist Scores from 80.3 to 89.4. No surgical complications or recurrences were reported. Conclusions Findings suggest that almost half of active patients may improve push-up performance after DWG excision at 6 months. Significant improvements were seen in wrist pain, ROM, grip strength, and all patient-reported outcomes, which is useful when counseling patients undergoing excision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...