Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Rep ; 14(1): 13787, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877207

RESUMEN

Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.


Asunto(s)
Corticosterona , Aprendizaje , Vocalización Animal , Animales , Vocalización Animal/fisiología , Masculino , Aprendizaje/fisiología , Corticosterona/metabolismo , Femenino , Pinzones/fisiología , Prosencéfalo/metabolismo , Prosencéfalo/fisiología , Genes Inmediatos-Precoces
2.
Mol Ecol ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933429

RESUMEN

A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.

3.
Sci Rep ; 12(1): 12086, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840576

RESUMEN

Left-right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix-including the differentially expressed PDGFRB gene-is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.


Asunto(s)
Pollos , Lateralidad Funcional , Animales , Pollos/fisiología , Matriz Extracelular , Lateralidad Funcional/fisiología , Expresión Génica , Retina
4.
Lupus ; 31(6): 744-753, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35341372

RESUMEN

Aortitis is a classic manifestation of large vessel vasculitis. Antiphospholipid syndrome (APS), sometimes known as Hughes syndrome, is an acquired autoimmune disorder that manifests clinically as recurrent venous or arterial thrombosis. Patients with APS may also suffer from various underlying diseases, most frequently systemic lupus erythematosus (SLE). Catastrophic antiphospholipid syndrome (CAPS) is a rare but serious complication of APS characterized by failure of several organs due to diffuse microcirculatory thrombi. Its main manifestations involve the kidneys, lungs, heart and central nervous system, and require early diagnosis and rapid therapeutic management. While APS can affect virtually any blood vessel, aortitis is not a known symptom of APS. We report the case of a 36-year-old patient with APS and SLE who presented with CAPS during pregnancy, with no concomitant SLE flare. The first manifestation of CAPS was aortitis, preceding renal, cardiac and haematological manifestations. The outcome was favourable with combined treatment including corticosteroids, anticoagulants, plasma exchange and rituximab. We then carried out a literature search for papers describing the presence of aortitis in APS and/or SLE. In the cases of aortic involvement identified in the literature, including another case of CAPS, the occurrence of aortitis in SLE, often associated with the presence of antiphospholipid antibodies/APS, suggests that aortitis should be considered as an under-recognized manifestation and potential non-criterion feature of APS.


Asunto(s)
Síndrome Antifosfolípido , Aortitis , Lupus Eritematoso Sistémico , Trombosis , Adulto , Anticuerpos Antifosfolípidos , Síndrome Antifosfolípido/complicaciones , Síndrome Antifosfolípido/diagnóstico , Aortitis/complicaciones , Aortitis/etiología , Femenino , Humanos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Microcirculación , Embarazo
5.
Proc Biol Sci ; 288(1964): 20211893, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34875198

RESUMEN

Sound is an essential source of information in many taxa and can notably be used by embryos to programme their phenotypes for postnatal environments. While underlying mechanisms are mostly unknown, there is growing evidence for the involvement of mitochondria-main source of cellular energy (i.e. ATP)-in developmental programming processes. Here, we tested whether prenatal sound programmes mitochondrial metabolism. In the arid-adapted zebra finch, prenatal exposure to 'heat-calls'-produced by parents incubating at high temperatures-adaptively alters nestling growth in the heat. We measured red blood cell mitochondrial function, in nestlings exposed prenatally to heat- or control-calls, and reared in contrasting thermal environments. Exposure to high temperatures always reduced mitochondrial ATP production efficiency. However, as expected to reduce heat production, prenatal exposure to heat-calls improved mitochondrial efficiency under mild heat conditions. In addition, when exposed to an acute heat-challenge, LEAK respiration was higher in heat-call nestlings, and mitochondrial efficiency low across temperatures. Consistent with its role in reducing oxidative damage, LEAK under extreme heat was also higher in fast growing nestlings. Our study therefore provides the first demonstration of mitochondrial acoustic sensitivity, and brings us closer to understanding the underpinning of acoustic developmental programming and avian strategies for heat adaptation.


Asunto(s)
Pinzones , Efectos Tardíos de la Exposición Prenatal , Aclimatación , Acústica , Adenosina Trifosfato/metabolismo , Animales , Pinzones/fisiología , Calor , Mitocondrias/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Temperatura
6.
Nature ; 592(7856): 737-746, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33911273

RESUMEN

High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.


Asunto(s)
Genoma , Genómica/métodos , Vertebrados/genética , Animales , Aves , Biblioteca de Genes , Tamaño del Genoma , Genoma Mitocondrial , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Cromosomas Sexuales/genética
7.
Neuroscience ; 444: 170-182, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32590039

RESUMEN

Serotonin is an important neurotransmitter of the brain, but its role in song control remains to be fully demonstrated. Using male zebra finches (Taeniopygia guttata) that have song learning and production capabilities, we analysed the serotonin expression levels in the song nuclei and adjacent areas (peri-song nuclei) using immunohistochemistry. Key song nuclei were identified using combinations of Hoechst, choline acetyltransferase, and a neurofilament (NN18) marker in reference to the ZEBrA atlas. Mean serotonin expression was highest in interfacial nucleus (Nif) and lower in the other song nuclei in the following order (in order of highest first): interfacial nucleus (Nif) > Area X > dorsomedial part of the intercollicular nucelus (DM) > robust nucleus of the archistriatum (RA) > lateral magnocellular nucleus of the anterior neostriatum (LMAN) > ventral respiratory group (VRG) > dorsolateral nucleus of the medial thalamus (DLM) > the nucleus HVC (proper name) > tracheosyringeal motor nucleus (nXIIts). However, the mean serotonin expression (in order of highest first) in the peri-song nuclei regions was: peri-DM > peri-nXIIts > supra-peri-HVC > peri-RA > peri-DLM > peri-Area X > infra-peri-HVC > peri-VRG > peri-LMAN > peri-Nif. Interestingly, serotoninergic fibers immunostained for serotonin or the serotonin transporter can be found as a basket-like peri-neuronal structure surrounding cholinergic cell bodies, and appear to form contacts onto dopaminergic neurones. In summary, serotonin fibers are present at discrete song nuclei, and peri-song nuclei regions, which suggest serotonin may have a direct and/or modulatory role in song control.


Asunto(s)
Pinzones , Vocalización Animal , Animales , Encéfalo , Mapeo Encefálico , Masculino , Serotonina
8.
Proc Natl Acad Sci U S A ; 117(38): 23311-23316, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332005

RESUMEN

Prolonged social isolation has negative effects on brain and behavior in humans and other social organisms, but neural mechanisms leading to these effects are not understood. Here we tested the hypothesis that even brief periods of social isolation can alter gene expression and DNA methylation in higher cognitive centers of the brain, focusing on the auditory/associative forebrain of the highly social zebra finch. Using RNA sequencing, we first identified genes that individually increase or decrease expression after isolation and observed general repression of gene sets annotated for neurotrophin pathways and axonal guidance functions. We then pursued 4 genes of large effect size: EGR1 and BDNF (decreased by isolation) and FKBP5 and UTS2B (increased). By in situ hybridization, each gene responded in different cell subsets, arguing against a single cellular mechanism. To test whether effects were specific to the social component of the isolation experience, we compared gene expression in birds isolated either alone or with a single familiar partner. Partner inclusion ameliorated the effect of solo isolation on EGR1 and BDNF, but not on FKBP5 and UTS2B nor on circulating corticosterone. By bisulfite sequencing analysis of auditory forebrain DNA, isolation caused changes in methylation of a subset of differentially expressed genes, including BDNF. Thus, social isolation has rapid consequences on gene activity in a higher integrative center of the brain, triggering epigenetic mechanisms that may influence processing of ongoing experience.


Asunto(s)
Pinzones/genética , Prosencéfalo/metabolismo , Aislamiento Social , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona/sangre , Metilación de ADN , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Pinzones/sangre , Pinzones/fisiología , Masculino , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
9.
Sci Rep ; 9(1): 816, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692609

RESUMEN

Songbirds communicate through learned vocalizations, using a forebrain circuit with convergent similarity to vocal-control circuitry in humans. This circuit is incomplete in female zebra finches, hence only males sing. We show that the UTS2B gene, encoding Urotensin-Related Peptide (URP), is uniquely expressed in a key pre-motor vocal nucleus (HVC), and specifically marks the neurons that form a male-specific projection that encodes timing features of learned song. UTS2B-expressing cells appear early in males, prior to projection formation, but are not observed in the female nucleus. We find no expression evidence for canonical receptors within the vocal circuit, suggesting either signalling to other brain regions via diffusion or transduction through other receptor systems. Urotensins have not previously been implicated in vocal control, but we find an annotation in Allen Human Brain Atlas of increased UTS2B expression within portions of human inferior frontal cortex implicated in human speech and singing. Thus UTS2B (URP) is a novel neural marker that may have conserved functions for vocal communication.


Asunto(s)
Prosencéfalo/metabolismo , Pájaros Cantores/fisiología , Urotensinas/genética , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Masculino , Caracteres Sexuales , Pájaros Cantores/genética , Urotensinas/metabolismo , Vocalización Animal
11.
Acta Neuropathol Commun ; 5(1): 3, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28069058

RESUMEN

Neuropathological and genetic findings suggest that the presynaptic protein α-synuclein (aSyn) is involved in the pathogenesis of synucleinopathy disorders, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy. Evidence suggests that the self-assembly of aSyn conformers bound to phospholipid membranes in an aggregation-prone state plays a key role in aSyn neurotoxicity. Accordingly, we hypothesized that protein binding partners of lipid-associated aSyn could inhibit the formation of toxic aSyn oligomers at membrane surfaces. To address this hypothesis, we characterized the protein endosulfine-alpha (ENSA), previously shown to interact selectively with membrane-bound aSyn, in terms of its effects on the membrane-induced aggregation and neurotoxicity of two familial aSyn mutants, A30P and G51D. We found that wild-type ENSA, but not the non-aSyn-binding S109E variant, interfered with membrane-induced aSyn self-assembly, aSyn-mediated vesicle disruption and aSyn neurotoxicity. Immunoblotting analyses revealed that ENSA was down-regulated in the brains of synucleinopathy patients versus non-diseased individuals. Collectively, these results suggest that ENSA can alleviate neurotoxic effects of membrane-bound aSyn via an apparent chaperone-like activity at the membrane surface, and a decrease in ENSA expression may contribute to aSyn neuropathology in synucleinopathy disorders. More generally, our findings suggest that promoting interactions between lipid-bound, amyloidogenic proteins and their binding partners is a viable strategy to alleviate cytotoxicity in a range of protein misfolding disorders.


Asunto(s)
Membrana Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/efectos de los fármacos , Adenoviridae , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Membrana Celular/metabolismo , Células Cultivadas , Estudios de Cohortes , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Escherichia coli , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Fármacos Neuroprotectores/metabolismo , Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Ratas Sprague-Dawley , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Liposomas Unilamelares/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
Nat Struct Mol Biol ; 23(5): 409-15, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27018801

RESUMEN

Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson's disease (PD). We present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by EM and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel, in-register ß-sheets and hydrophobic-core residues, and with substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as supported by the structural similarity of early-onset-PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules, to aid in PD diagnosis and treatment.


Asunto(s)
Amiloide/química , alfa-Sinucleína/química , Secuencia de Aminoácidos , Amiloide/fisiología , Animales , Células Cultivadas , Humanos , Enlace de Hidrógeno , Cuerpos de Lewy/química , Ratones , Neuronas/fisiología , Resonancia Magnética Nuclear Biomolecular , Enfermedad de Parkinson/patología , Dominios Proteicos , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , alfa-Sinucleína/fisiología
13.
Mol Biol Cell ; 25(24): 3926-41, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25273557

RESUMEN

Parkinson's disease is associated with multiplication of the α-synuclein gene and abnormal accumulation of the protein. In animal models, α-synuclein overexpression broadly impairs synaptic vesicle trafficking. However, the exact steps of the vesicle trafficking pathway affected by excess α-synuclein and the underlying molecular mechanisms remain unknown. Therefore we acutely increased synuclein levels at a vertebrate synapse and performed a detailed ultrastructural analysis of the effects on presynaptic membranes. At stimulated synapses (20 Hz), excess synuclein caused a loss of synaptic vesicles and an expansion of the plasma membrane, indicating an impairment of vesicle recycling. The N-terminal domain (NTD) of synuclein, which folds into an α-helix, was sufficient to reproduce these effects. In contrast, α-synuclein mutants with a disrupted N-terminal α-helix (T6K and A30P) had little effect under identical conditions. Further supporting this model, another α-synuclein mutant (A53T) with a properly folded NTD phenocopied the synaptic vesicle recycling defects observed with wild type. Interestingly, the vesicle recycling defects were not observed when the stimulation frequency was reduced (5 Hz). Thus excess α-synuclein impairs synaptic vesicle recycling evoked during intense stimulation via a mechanism that requires a properly folded N-terminal α-helix.


Asunto(s)
Proteínas de Peces/metabolismo , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Axones/fisiología , Membrana Celular/metabolismo , Membrana Celular/fisiología , Estimulación Eléctrica , Endocitosis/genética , Endocitosis/fisiología , Proteínas de Peces/química , Proteínas de Peces/genética , Immunoblotting , Lampreas/genética , Lampreas/metabolismo , Lampreas/fisiología , Microscopía Confocal , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Sinapsis/metabolismo , Vesículas Sinápticas/ultraestructura , alfa-Sinucleína/química , alfa-Sinucleína/genética
14.
J Phys Chem B ; 118(13): 3559-71, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24635210

RESUMEN

α-Synuclein (α-syn), an aggregation-prone amyloid protein, has been suggested as a potential cause of Parkinson's disease. When misfolded, α-syn aggregates as Lewy bodies in the brain, the loss of which can disrupt protein homeostasis. To investigate the potential of nanoparticle-mediated therapy for amyloid diseases, α-syn adsorption onto positively charged poly(allylamine hydrochloride) coated gold nanoparticles (PAH Au NPs) was studied. α-Syn adsorbs in multilayers onto PAH Au NPs, which with increasing α-syn/PAH Au NP ratios (>2000 α-syn/PAH Au NP) results in the flocculation and sedimentation of α-syn coated PAH Au NPs. The orientation and conformation of α-syn on PAH Au NPs were studied using trypsin digestion and circular dichroism, which showed that α-syn adopts a random orientation on PAH Au NPs, with an increase in ß-sheet and a decrease in α-helix structures. A consistent global change in α-syn's conformation was also observed regardless of PAH Au NP concentration, suggesting bound α-syn initiates conformational changes to free α-syn.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , alfa-Sinucleína/química , Adsorción , Secuencia de Aminoácidos , Dicroismo Circular , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Poliaminas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Propiedades de Superficie , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
Langmuir ; 29(14): 4603-15, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23477540

RESUMEN

The disruption of α-synuclein (α-syn) homeostasis in neurons is a potential cause of Parkinson's disease, which is manifested pathologically by the appearance of α-syn aggregates, or Lewy bodies. Treatments for neurological diseases are extremely limited. To study the potential use of gold nanoparticles (Au NPs) to limit α-syn misfolding, the binding and orientation of α-syn on Au NPs were investigated. α-Syn was determined to interact with 20 and 90 nm Au NPs via multilayered adsorption: a strong electrostatic interaction between α-syn and Au NPs in the hard corona and a weaker noncovalent protein-protein interaction in the soft corona. Spectroscopic and light-scattering titrations led to the determinations of binding constants for the Au NP α-syn coronas: for the hard corona on 20 nm Au NPs, the equilibrium association constant was 2.9 ± 1.1 × 10(9) M(-1) (for 360 ± 70 α-syn/NP), and on 90 nm Au NPs, the hard corona association constant was 9.5 ± 0.8 × 10(10) M(-1) (for 5300 ± 700 α-syn/NP). The binding of the soft corona was thermodynamically unfavorable and kinetically driven and was in constant exchange with "free" α-syn in solution. A protease digestion method was used to deduce the α-syn orientation and structure on Au NPs, revealing that α-syn absorbs onto negatively charged Au NPs via its N-terminus while apparently retaining its natively unstructured conformation. These results suggest that Au NPs could be used to sequester and regulate α-syn homeostasis.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , alfa-Sinucleína/química , Adsorción , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Tamaño de la Partícula , Unión Proteica , Proteolisis , Espectrometría de Fluorescencia , Tripsina/metabolismo , alfa-Sinucleína/metabolismo
16.
PLoS One ; 8(3): e49750, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505409

RESUMEN

Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils.


Asunto(s)
Mutación , Enfermedad de Parkinson/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética , Secuencia de Aminoácidos , Humanos , Cuerpos de Lewy/química , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Enfermedad de Parkinson/metabolismo , Estructura Secundaria de Proteína , alfa-Sinucleína/ultraestructura
17.
J Neurosci ; 33(6): 2605-15, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23392688

RESUMEN

Modifications to the gene encoding human α-synuclein have been linked to the development of Parkinson's disease. The highly conserved structure of α-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human α-synuclein, including new genetic tags developed for correlated light microscopy and electron microscopy (the tetracysteine-biarsenical labeling system or the new fluorescent protein for electron microscopy, MiniSOG), we determined the distribution of α-synuclein when overexpressed in primary neurons at supramolecular and cellular scales in three dimensions (3D). We observed specific association of α-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, α-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice overexpressing human α-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. Three-dimensional electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulovesicular structures similar to what we observed in vitro. We propose that α-synuclein overexpression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that α-synuclein is involved in processes associated with the sorting, channeling, packaging, and transport of synaptic material destined for degradation.


Asunto(s)
Neuronas/química , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/análisis , alfa-Sinucleína/biosíntesis , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica/métodos , Microscopía de Polarización/métodos , Neuronas/ultraestructura , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , alfa-Sinucleína/genética
18.
J Am Chem Soc ; 134(11): 5090-9, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22352310

RESUMEN

α-Synuclein (AS) fibrils are the main protein component of Lewy bodies, the pathological hallmark of Parkinson's disease and other related disorders. AS forms helices that bind phospholipid membranes with high affinity, but no atomic level data for AS aggregation in the presence of lipids is yet available. Here, we present direct evidence of a conversion from α-helical conformation to ß-sheet fibrils in the presence of anionic phospholipid vesicles and direct conversion to ß-sheet fibrils in their absence. We have trapped intermediate states throughout the fibril formation pathways to examine the structural changes using solid-state NMR spectroscopy and electron microscopy. The comparison between mature AS fibrils formed in aqueous buffer and those derived in the presence of anionic phospholipids demonstrates no major changes in the overall fibril fold. However, a site-specific comparison of these fibrillar states demonstrates major perturbations in the N-terminal domain with a partial disruption of the long ß-strand located in the 40s and small perturbations in residues located in the "non-ß amyloid component" (NAC) domain. Combining all these results, we propose a model for AS fibrillogenesis in the presence of phospholipid vesicles.


Asunto(s)
Fosfolípidos/química , alfa-Sinucleína/química , Microscopía Electrónica , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Estructura Secundaria de Proteína
19.
J Biol Chem ; 287(14): 11526-32, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22334684

RESUMEN

α-Synuclein (AS) is associated with both sporadic and familial forms of Parkinson disease (PD). In sporadic disease, wild-type AS fibrillates and accumulates as Lewy bodies within dopaminergic neurons of the substantia nigra. The accumulation of misfolded AS is associated with the death of these neurons, which underlies many of the clinical features of PD. In addition, a rare missense mutation in AS, A30P, is associated with highly penetrant, autosomal dominant PD, although the pathogenic mechanism is unclear. A30P AS fibrillates more slowly than the wild-type (WT) protein in vitro and has been reported to preferentially adopt a soluble, protofibrillar conformation. This has led to speculation that A30P forms aggregates that are distinct in structure compared with wild-type AS. Here, we perform a detailed comparison of the chemical shifts and secondary structures of these fibrillar species, based upon our recent characterization of full-length WT fibrils. We have assigned A30P AS fibril chemical shifts de novo and used them to determine its secondary structure empirically. Our results illustrate that although A30P forms fibrils more slowly than WT in vitro, the chemical shifts and secondary structure of the resultant fibrils are in high agreement, demonstrating a conserved ß-sheet core.


Asunto(s)
Proteínas Mutantes/química , Mutación , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , alfa-Sinucleína/química , Humanos , Cinética , Proteínas Mutantes/genética , Estructura Secundaria de Proteína , alfa-Sinucleína/genética
20.
N C Med J ; 72(4): 285-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22128689

RESUMEN

A recent report from the Institute of Medicine of the National Academies (IOM) calls for states to amend regulations on the practice of advanced practice registered nurses (APRNs). This article reviews the roles of APRNs, the IOM recommendations, and efforts by national and state stakeholders to remove legal barriers to APRN practice.


Asunto(s)
Enfermería de Práctica Avanzada/legislación & jurisprudencia , Reforma de la Atención de Salud/legislación & jurisprudencia , Política de Salud/legislación & jurisprudencia , Certificación , Educación en Enfermería/organización & administración , Humanos , Licencia en Enfermería , National Academies of Science, Engineering, and Medicine, U.S., Health and Medicine Division , North Carolina , Formulación de Políticas , Competencia Profesional , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...