Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Haptics ; PP2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831581

RESUMEN

Ultrasonic mid-air haptic technology allows for the perceptual rendering of textured surfaces onto the user's hand. Unlike real textured surfaces, however, mid-air haptic feedback lacks implicit multisensory cues needed to reliably infer a texture's attributes (e.g., its roughness). In this paper, we combined mid-air haptic textures with congruent sound feedback to investigate how sonification could influence people's (1) explicit judgment of the texture attributes, (2) explicit sensations of their own hand, and (3) implicit motor behavior during haptic exploration. Our results showed that audio cues (presented solely or combined with haptics) influenced participants' judgment of the texture attributes (roughness, hardness, moisture and viscosity), produced some hand sensations (the feeling of having a hand smoother, softer, looser, more flexible, colder, wetter and more natural), and changed participants' speed (moving faster or slower) while exploring the texture. We then conducted a principal component analysis to better understand and visualize the found results and conclude with a short discussion on how audio-haptic associations can be used to create embodied experiences in emerging application scenarios in the metaverse.

2.
IEEE Trans Haptics ; 16(2): 322-333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37247320

RESUMEN

Mid-air haptic technology can render a plethora of tactile sensations including points, lines, shapes, and textures. To do so, one requires increasingly complex haptic displays. Meanwhile, tactile illusions have had widespread success in the development of contact and wearable haptic displays. In this article, we exploit the apparent tactile motion illusion to display mid-air haptic directional lines; a prerequisite for the rendering of shapes and icons. We present two pilot studies and a psychophysical study that contrasts a dynamic tactile pointer (DTP) to an apparent tactile pointer (ATP) in terms of direction recognition. To that end, we identify optimal duration and direction parameters for both DTP and ATP mid-air haptic lines and discuss the implications of our findings with respect to haptic feedback design, and device complexity.


Asunto(s)
Ilusiones , Percepción del Tacto , Humanos , Tecnología Háptica , Tacto , Adenosina Trifosfato
3.
IEEE Trans Haptics ; 16(4): 580-585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37155385

RESUMEN

Virtual reality expands the possibilities of human action. With hand-tracking technology, we can directly interact with these environments without the need for a mediating controller. Much previous research has looked at the user-avatar relationship. Here we explore the avatar-object relationship by manipulating the visual congruence and haptic feedback of the virtual object of interaction. We examine the effect of these variables on the sense of agency (SoA), which refers to the feeling of control over our actions and their effects. This psychological variable is highly relevant to user experience and is attracting increased interest in the field. Our results showed that implicit SoA was not significantly affected by visual congruence and haptics. However, both of these manipulations significantly affected explicit SoA, which was strengthened by the presence of mid-air haptics and was weakened by the presence of visual incongruence. We propose an explanation of these findings that draws on the cue integration theory of SoA. We also discuss the implications of these findings for HCI research and design.


Asunto(s)
Percepción del Tacto , Realidad Virtual , Humanos , Tecnología Háptica , Mano , Avatar
4.
IEEE Trans Haptics ; PP2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37141065

RESUMEN

Mid-air haptic feedback technology produces tactile sensations that are felt without the need for physical interactions. However, mid-air haptic experiences need to be congruent with visual cues to reflect user expectations. To overcome this, we investigate how to visually present properties of objects, so that what one feels is a more accurate prediction of what one sees. Specifically, this paper investigates the relationship between 8 visual parameters of a point-cloud representation of a surface (particle color, size, distribution, etc.) and 4 mid-air haptic spatial modulation frequencies (20, 40, 60 and 80 Hz). Our results and analysis reveal a statistical significance between low and high-frequency modulations and particle density, particle bumpiness (depth) and particle arrangement (randomness).

5.
IEEE Trans Haptics ; 15(4): 729-740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227813

RESUMEN

We present UltraButton a minimalist touchless button including haptic, audio and visual feedback costing only $200. While current mid-air haptic devices can be too bulky and expensive (around $2 k) to be integrated into simple mid-air interfaces such as point and select, we show how a clever arrangement of 83 ultrasound transducers and a new modulation algorithm can produce compelling mid-air haptic feedback and parametric audio at a minimal cost. To validate our prototype, we compared its haptic output to a commercially-available mid-air haptic device through force balance measurements and user perceived strength ratings and found no significant differences. With the addition of 20 RGB LEDs, a proximity sensor and other off-the-shelf electronics, we then propose a complete solution for a simple multimodal touchless button interface. We tested this interface in a second experiment that investigated user gestures and their dependence on system parameters such as the haptic and visual activation times and heights above the device. Finally, we discuss new interactions and applications scenarios for UltraButtons.


Asunto(s)
Interfaces Hápticas , Percepción del Tacto , Humanos , Tecnología Háptica , Retroalimentación , Interfaz Usuario-Computador
6.
Front Neurosci ; 16: 949138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172040

RESUMEN

Human-computer integration is an emerging area in which the boundary between humans and technology is blurred as users and computers work collaboratively and share agency to execute tasks. The sense of agency (SoA) is an experience that arises by a combination of a voluntary motor action and sensory evidence whether the corresponding body movements have somehow influenced the course of external events. The SoA is not only a key part of our experiences in daily life but also in our interaction with technology as it gives us the feeling of "I did that" as opposed to "the system did that," thus supporting a feeling of being in control. This feeling becomes critical with human-computer integration, wherein emerging technology directly influences people's body, their actions, and the resulting outcomes. In this review, we analyse and classify current integration technologies based on what we currently know about agency in the literature, and propose a distinction between body augmentation, action augmentation, and outcome augmentation. For each category, we describe agency considerations and markers of differentiation that illustrate a relationship between assistance level (low, high), agency delegation (human, technology), and integration type (fusion, symbiosis). We conclude with a reflection on the opportunities and challenges of integrating humans with computers, and finalise with an expanded definition of human-computer integration including agency aspects which we consider to be particularly relevant. The aim this review is to provide researchers and practitioners with guidelines to situate their work within the integration research agenda and consider the implications of any technologies on SoA, and thus overall user experience when designing future technology.

7.
IEEE Trans Haptics ; 15(1): 188-199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34495841

RESUMEN

Ultrasound mid-air haptics has received much attention from both academic and industrial groups, however, such investigations have almost exclusively focused on the tactile stimulation of glabrous (hairless) skin of our hands. Meanwhile, the non-glabrous (hairy) part of the skin covers the largest area of our body, yet remains largely untouched and unexplored by this haptic technology. 1) We study acoustic streaming and the 2) acoustic radiation force associated with a mid-air haptic stimulus. 3) We characterise the perceived strength, temperature, and definition of the stimulus through a user study. 4) Finally, in a second user study we explore the possibility of conveying affective (pleasant) touch. These objective and subjective experiments provide the first deep understanding of how mid-air haptics can affect tactile perception through stimulating the hairy skin. To that end, we discuss how researchers and haptic designers can leverage mid-air haptic technology to vary the perceived touch intensity, temperature, and deliver affective touch.


Asunto(s)
Tecnología Háptica , Percepción del Tacto , Cabello , Humanos , Piel , Tacto/fisiología , Percepción del Tacto/fisiología
8.
R Soc Open Sci ; 8(7): 210625, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34350020

RESUMEN

The extensive use of touchscreens for all manner of human-computer interactions has made them plausible instruments of touch-mediated disease transmission. To that end, we employ stochastic simulations to model human-fomite interaction with a distinct focus on touchscreen interfaces. The timings and frequency of interactions from within a closed population of infectious and susceptible individuals was modelled using a queuing network. A pseudo-reproductive number R was used to compare outcomes under various parameter conditions. We then apply the simulation to a specific real-world scenario; namely that of airport self-check-in and baggage drop. A counterintuitive result was that R decreased with increased touch rates required for touchscreen interaction. Additionally, as one of few parameters to be controlled, the rate of cleaning/disinfecting screens plays an essential role in mitigating R, though alternative technological strategies could prove more effective. The simulation model developed provides a foundation for future advances in more sophisticated fomite disease-transmission modelling.

9.
Sci Rep ; 10(1): 20655, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244114

RESUMEN

In the Wireless Localization Matching Problem (WLMP) the challenge is to match pieces of equipment with a set of candidate locations based on wireless signal measurements taken by the pieces of equipment. This challenge is complicated by the noise that is inherent in wireless signal measurements. Here we propose the use of diffusion maps, a manifold learning technique, to obtain an embedding of positions and equipment coordinates in a space that enables coordinate comparison and reliable evaluation of assignment quality at very low computational cost. We show that the mapping is robust to noise and using diffusion maps allows for accurate matching in a realistic setting. This suggests that the diffusion-map-based approach could significantly increase the accuracy of wireless localization in applications.

10.
IEEE Trans Haptics ; 13(4): 806-817, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31940553

RESUMEN

An important challenge that affects ultrasonic mid-air haptics, in contrast to physical touch, is that we lose certain exploratory procedures such as contour following. This makes the task of perceiving geometric properties and shape identification more difficult. Meanwhile, the growing interest in mid-air haptics and their application to various new areas requires an improved understanding of how we perceive specific haptic stimuli, such as icons and control dials in mid-air. We address this challenge by investigating static and dynamic methods of displaying 2D geometric shapes in mid-air. We display a circle, a square, and a triangle, in either a static or dynamic condition, using ultrasonic mid-air haptics. In the static condition, the shapes are presented as a full outline in mid-air, while in the dynamic condition, a tactile pointer is moved around the perimeter of the shapes. We measure participants' accuracy and confidence of identifying shapes in two controlled experiments ( n1 = 34, n2 = 25). Results reveal that in the dynamic condition people recognise shapes significantly more accurately, and with higher confidence. We also find that representing polygons as a set of individually drawn haptic strokes, with a short pause at the corners, drastically enhances shape recognition accuracy. Our research supports the design of mid-air haptic user interfaces in application scenarios such as in-car interactions or assistive technology in education.


Asunto(s)
Percepción de Forma , Percepción del Tacto , Humanos , Reconocimiento en Psicología , Tacto
11.
Appl Ergon ; 81: 102909, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31422270

RESUMEN

Focussed ultrasound can be used to create the sensation of touch in mid-air. Combined with gestures, this can provide haptic feedback to guide users, thereby overcoming the lack of agency associated with pure gestural interfaces, and reducing the need for vision - it is therefore particularly apropos of the driving domain. In a counter-balanced 2 × 2 driving simulator study, a traditional in-vehicle touchscreen was compared with a virtual mid-air gestural interface, both with and without ultrasound haptics. Forty-eight experienced drivers (28 male, 20 female) undertook representative in-vehicle tasks - discrete target selections and continuous slider-bar manipulations - whilst driving. Results show that haptifying gestures with ultrasound was particularly effective in reducing visual demand (number of long glances and mean off-road glance time), and increasing performance (shortest interaction times, highest number of correct responses and least 'overshoots') associated with continuous tasks. In contrast, for discrete, target-selections, the touchscreen enabled the highest accuracy and quickest responses, particularly when combined with haptic feedback to guide interactions, although this also increased visual demand. Subjectively, the gesture interfaces invited higher ratings of arousal compared to the more familiar touch-surface technology, and participants indicated the lowest levels of workload (highest performance, lowest frustration) associated with the gesture-haptics interface. In addition, gestures were preferred by participants for continuous tasks. The study shows practical utility and clear potential for the use of haptified gestures in the automotive domain.


Asunto(s)
Conducción de Automóvil/psicología , Diseño de Equipo/psicología , Gestos , Ondas Ultrasónicas , Interfaz Usuario-Computador , Adulto , Anciano , Nivel de Alerta , Simulación por Computador , Terminales de Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tacto , Adulto Joven
12.
Phys Rev E ; 97(4-1): 042319, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758699

RESUMEN

We analyze complexity in spatial network ensembles through the lens of graph entropy. Mathematically, we model a spatial network as a soft random geometric graph, i.e., a graph with two sources of randomness, namely nodes located randomly in space and links formed independently between pairs of nodes with probability given by a specified function (the "pair connection function") of their mutual distance. We consider the general case where randomness arises in node positions as well as pairwise connections (i.e., for a given pair distance, the corresponding edge state is a random variable). Classical random geometric graph and exponential graph models can be recovered in certain limits. We derive a simple bound for the entropy of a spatial network ensemble and calculate the conditional entropy of an ensemble given the node location distribution for hard and soft (probabilistic) pair connection functions. Under this formalism, we derive the connection function that yields maximum entropy under general constraints. Finally, we apply our analytical framework to study two practical examples: ad hoc wireless networks and the US flight network. Through the study of these examples, we illustrate that both exhibit properties that are indicative of nearly maximally entropic ensembles.

13.
Phys Rev E ; 93(3): 032313, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27078372

RESUMEN

In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H(r) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

14.
Artículo en Inglés | MEDLINE | ID: mdl-25353867

RESUMEN

We investigate the escape dynamics of the doubling map with a time-periodic hole. Ulam's method was used to calculate the escape rate as a function of the control parameters. We consider two cases, oscillating or breathing holes, where the sides of the hole are moving in or out of phase respectively. We find out that the escape rate is well described by the overlap of the hole with its images, for holes centered at periodic orbits.


Asunto(s)
Modelos Biológicos , Modelos Teóricos , Oscilometría/métodos , Simulación por Computador
15.
Eur Heart J ; 35(16): 1078-87, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23470493

RESUMEN

AIMS: Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. METHODS AND RESULTS: We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K(+) currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). CONCLUSIONS: These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Interferencia de ARN/fisiología , Canal de Potasio ERG1 , Fenómenos Electrofisiológicos/genética , Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Terapia Genética , Humanos , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/terapia , Mutación Missense/genética , Fenotipo , Transfección
16.
Chaos ; 22(2): 023132, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22757539

RESUMEN

A particle driven by deterministic chaos and moving in a spatially extended environment can exhibit normal diffusion, with its mean square displacement growing proportional to the time. Here, we consider the dependence of the diffusion coefficient on the size and the position of areas of phase space linking spatial regions ('holes') in a class of simple one-dimensional, periodically lifted maps. The parameter dependent diffusion coefficient can be obtained analytically via a Taylor-Green-Kubo formula in terms of a functional recursion relation. We find that the diffusion coefficient varies non-monotonically with the size of a hole and its position, which implies that a diffusion coefficient can increase by making the hole smaller. We derive analytic formulas for small holes in terms of periodic orbits covered by the holes. The asymptotic regimes that we observe show deviations from the standard stochastic random walk approximation. The escape rate of the corresponding open system is also calculated. The resulting parameter dependencies are compared with the ones for the diffusion coefficient and explained in terms of periodic orbits.

17.
Chaos ; 22(2): 026113, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22757572

RESUMEN

A "drivebelt" stadium billiard with boundary consisting of circular arcs of differing radius connected by their common tangents shares many properties with the conventional "straight" stadium, including hyperbolicity and mixing, as well as intermittency due to marginally unstable periodic orbits (MUPOs). Interestingly, the roles of the straight and curved sides are reversed. Here, we discuss intermittent properties of the chaotic trajectories from the point of view of escape through a hole in the billiard, giving the exact leading order coefficient lim(t→∞)tP(t) of the survival probability P(t) which is algebraic for fixed hole size. However, in the natural scaling limit of small hole size inversely proportional to time, the decay remains exponential. The big distinction between the straight and drivebelt stadia is that in the drivebelt case, there are multiple families of MUPOs leading to qualitatively new effects. A further difference is that most marginal periodic orbits in this system are oblique to the boundary, thus permitting applications that utilise total internal reflection such as microlasers.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 1): 011138, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400543

RESUMEN

Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.


Asunto(s)
Coloides/química , Modelos Químicos , Modelos Moleculares , Modelos Estadísticos , Simulación por Computador
19.
Chaos ; 22(4): 043115, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23278050

RESUMEN

We investigate the dependence of the escape rate on the position of a hole placed in uniformly hyperbolic systems admitting a finite Markov partition. We derive an exact periodic orbit formula for finite size Markov holes which differs from other periodic expansions in the literature and can account for additional distortion to maps with piecewise constant expansion rate. Using asymptotic expansions in powers of hole size we show that for systems conjugate to the binary shift, the average escape rate is always larger than the expectation based on the hole size. Moreover, we show that in the small hole limit the difference between the two decays like a known constant times the square of the hole size. Finally, we relate this problem to the random choice of hole positions and we discuss possible extensions of our results to non-Markov holes as well as applications to leaky dynamical networks.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036212, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21517580

RESUMEN

The survival probability of the open stadium billiard with one hole on its boundary is well known to decay asymptotically as a power law. We investigate the transmission and reflection survival probabilities for the case of two holes placed asymmetrically. Classically, these distributions are shown to lose their algebraic decay tails depending on the choice of injecting hole, therefore exhibiting asymmetric transport. The mechanism behind this is explained while exact expressions are given and confirmed numerically. We propose a model for experimental observation of this effect using semiconductor nanostructures and comment on the relevant quantum time scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...