Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 612: 923-930, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28886544

RESUMEN

A method is developed that allows the construction of spatial emission inventories. The method is applied for anthropogenic SO2 over China (0.25°×0.25°). The Enhancement Ratio Method (ERM) allows for the calculation of SO2 emissions using relationships between gridded satellite measurements of SO2 and NO2 at low wind speeds, and satellite-based NOx emission estimates. Here, we derive SO2 emissions for five years (2007-2011). A large decrease of emissions during 2007-2009 and a modest increase between 2010 and 2011 is observed. The evolution of emissions over time calculated here is in general agreement with bottom-up inventories, although differences exist, not only between the current inventory and other inventories but also among the bottom up inventories themselves. The ERM-derived emissions are consistent, spatially and temporally, with existing inventories.

2.
Atmos Chem Phys ; 16(21): 13853-13884, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29755508

RESUMEN

This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the Aerosol Optical Depth (AOD) over the Eastern Mediterranean as derived from MODIS Terra (3/2000-12/2012) and Aqua (7/2002-12/2012) satellite instruments. For this purpose, a 0.1° × 0.1° gridded MODIS dataset was compiled and validated against sunphotometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium sized cities, industrial zones, and power plant complexes, seasonal variabilities, and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is ~ 0.22 ± 0.19 with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in Central and Eastern Europe, and transport of dust from the Sahara Desert and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine mode natural aerosols account for ~ 51 %, ~ 34 % and ~ 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account ~ 40 %, ~ 34 % and ~ 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...