Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Image Process ; 31: 2557-2569, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35275816

RESUMEN

Segmentation of curvilinear structures is important in many applications, such as retinal blood vessel segmentation for early detection of vessel diseases and pavement crack segmentation for road condition evaluation and maintenance. Currently, deep learning-based methods have achieved impressive performance on these tasks. Yet, most of them mainly focus on finding powerful deep architectures but ignore capturing the inherent curvilinear structure feature (e.g., the curvilinear structure is darker than the context) for a more robust representation. In consequence, the performance usually drops a lot on cross-datasets, which poses great challenges in practice. In this paper, we aim to improve the generalizability by introducing a novel local intensity order transformation (LIOT). Specifically, we transfer a gray-scale image into a contrast-invariant four-channel image based on the intensity order between each pixel and its nearby pixels along with the four (horizontal and vertical) directions. This results in a representation that preserves the inherent characteristic of the curvilinear structure while being robust to contrast changes. Cross-dataset evaluation on three retinal blood vessel segmentation datasets demonstrates that LIOT improves the generalizability of some state-of-the-art methods. Additionally, the cross-dataset evaluation between retinal blood vessel segmentation and pavement crack segmentation shows that LIOT is able to preserve the inherent characteristic of curvilinear structure with large appearance gaps. An implementation of the proposed method is available at https://github.com/TY-Shi/LIOT.


Asunto(s)
Algoritmos , Vasos Retinianos , Procesamiento de Imagen Asistido por Computador , Vasos Retinianos/diagnóstico por imagen
2.
Med Image Anal ; 67: 101832, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166776

RESUMEN

Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the 2018 Left Atrium Segmentation Challenge using 154 3D LGE-MRIs, currently the world's largest atrial LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show that the top method achieved a Dice score of 93.2% and a mean surface to surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved superior results than traditional methods and machine learning approaches containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for atrial LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Furthermore, the findings from this study can potentially be extended to other imaging datasets and modalities, having an impact on the wider medical imaging community.


Asunto(s)
Benchmarking , Gadolinio , Algoritmos , Atrios Cardíacos/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
3.
Med Image Anal ; 48: 75-94, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29852312

RESUMEN

Preterm birth is a multifactorial condition associated with increased morbidity and mortality. Diffuse excessive high signal intensity (DEHSI) has been recently described on T2-weighted MR sequences in this population and thought to be associated with neuropathologies. To date, no robust and reproducible method to assess the presence of white matter hyperintensities has been developed, perhaps explaining the current controversy over their prognostic value. The aim of this paper is to propose a new semi-automated framework to detect DEHSI on neonatal brain MR images having a particular pattern due to the physiological lack of complete myelination of the white matter. A novel method for semi- automatic segmentation of neonatal brain structures and DEHSI, based on mathematical morphology and on max-tree representations of the images is thus described. It is a mandatory first step to identify and clinically assess homogeneous cohorts of neonates for DEHSI and/or volume of any other segmented structures. Implemented in a user-friendly interface, the method makes it straightforward to select relevant markers of structures to be segmented, and if needed, apply eventually manual corrections. This method responds to the increasing need for providing medical experts with semi-automatic tools for image analysis, and overcomes the limitations of visual analysis alone, prone to subjectivity and variability. Experimental results demonstrate that the method is accurate, with excellent reproducibility and with very few manual corrections needed. Although the method was intended initially for images acquired at 1.5T, which corresponds to the usual clinical practice, preliminary results on images acquired at 3T suggest that the proposed approach can be generalized.


Asunto(s)
Encéfalo/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Recien Nacido Prematuro , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Humanos , Recién Nacido , Sustancia Blanca/anatomía & histología
4.
IEEE Trans Pattern Anal Mach Intell ; 39(3): 457-469, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27101599

RESUMEN

Current trends in image segmentation are to compute a hierarchy of image segmentations from fine to coarse. A classical approach to obtain a single meaningful image partition from a given hierarchy is to cut it in an optimal way, following the seminal approach of the scale-set theory. While interesting in many cases, the resulting segmentation, being a non-horizontal cut, is limited by the structure of the hierarchy. In this paper, we propose a novel approach that acts by transforming an input hierarchy into a new saliency map. It relies on the notion of shape space: a graph representation of a set of regions extracted from the image. Each region is characterized with an attribute describing it. We weigh the boundaries of a subset of meaningful regions (local minima) in the shape space by extinction values based on the attribute. This extinction-based saliency map represents a new hierarchy of segmentations highlighting regions having some specific characteristics. Each threshold of this map represents a segmentation which is generally different from any cut of the original hierarchy. This new approach thus enlarges the set of possible partition results that can be extracted from a given hierarchy. Qualitative and quantitative illustrations demonstrate the usefulness of the proposed method.

5.
IEEE Trans Pattern Anal Mach Intell ; 38(6): 1126-40, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26415150

RESUMEN

Connected filters are well-known for their good contour preservation property. A popular implementation strategy relies on tree-based image representations: for example, one can compute an attribute characterizing the connected component represented by each node of the tree and keep only the nodes for which the attribute is sufficiently high. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is performed not in the space of the image, but in the space of shapes built from the image. Such a processing of shape-space filtering is a generalization of the existing tree-based connected operators. Indeed, the framework includes the classical existing connected operators by attributes. It also allows us to propose a class of novel connected operators from the leveling family, based on non-increasing attributes. Finally, we also propose a new class of connected operators that we call morphological shapings. Some illustrations and quantitative evaluations demonstrate the usefulness and robustness of the proposed shape-space filters.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 93-96, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268289

RESUMEN

The progress of magnetic resonance imaging (MRI) allows for a precise exploration of the brain of premature infants at term equivalent age. The so-called DEHSI (diffuse excessive high signal intensity) of the white matter of premature brains remains a challenging issue in terms of definition, and thus of interpretation. We propose a semi-automatic detection and quantification method of white matter hyperintensities in MRI relying on morphological operators and max-tree representations, which constitutes a powerful tool to help radiologists to improve their interpretation. Results show better reproducibility and robustness than interactive segmentation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Reproducibilidad de los Resultados
7.
IEEE Trans Image Process ; 24(12): 5330-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26415169

RESUMEN

The topographic map of a gray-level image, also called tree of shapes, provides a high-level hierarchical representation of the image contents. This representation, invariant to contrast changes and to contrast inversion, has been proved very useful to achieve many image processing and pattern recognition tasks. Its definition relies on the total ordering of pixel values, so this representation does not exist for color images, or more generally, multivariate images. Common workarounds, such as marginal processing, or imposing a total order on data, are not satisfactory and yield many problems. This paper presents a method to build a tree-based representation of multivariate images, which features marginally the same properties of the gray-level tree of shapes. Briefly put, we do not impose an arbitrary ordering on values, but we only rely on the inclusion relationship between shapes in the image definition domain. The interest of having a contrast invariant and self-dual representation of multivariate image is illustrated through several applications (filtering, segmentation, and object recognition) on different types of data: color natural images, document images, satellite hyperspectral imaging, multimodal medical imaging, and videos.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Humanos , Análisis Multivariante
8.
IEEE Trans Image Process ; 23(12): 5612-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25373079

RESUMEN

This paper introduces a topological approach to local invariant feature detection motivated by Morse theory. We use the critical points of the graph of the intensity image, revealing directly the topology information as initial interest points. Critical points are selected from what we call a tree-based shape-space. In particular, they are selected from both the connected components of the upper level sets of the image (the Max-tree) and those of the lower level sets (the Min-tree). They correspond to specific nodes on those two trees: 1) to the leaves (extrema) and 2) to the nodes having bifurcation (saddle points). We then associate to each critical point the largest region that contains it and is topologically equivalent in its tree. We call such largest regions the tree-based Morse regions (TBMRs). The TBMR can be seen as a variant of maximally stable extremal region (MSER), which are contrasted regions. Contrarily to MSER, TBMR relies only on topological information and thus fully inherit the invariance properties of the space of shapes (e.g., invariance to affine contrast changes and covariance to continuous transformations). In particular, TBMR extracts the regions independently of the contrast, which makes it truly contrast invariant. Furthermore, it is quasi-parameter free. TBMR extraction is fast, having the same complexity as MSER. Experimentally, TBMR achieves a repeatability on par with state-of-the-art methods, but obtains a significantly higher number of features. Both the accuracy and robustness of TBMR are demonstrated by applications to image registration and 3D reconstruction.

9.
IEEE Trans Image Process ; 23(9): 3885-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25020097

RESUMEN

Connected operators are morphological tools that have the property of filtering images without creating new contours and without moving the contours that are preserved. Those operators are related to the max-tree and min-tree representations of images, and many algorithms have been proposed to compute those trees. However, no exhaustive comparison of these algorithms has been proposed so far, and the choice of an algorithm over another depends on many parameters. Since the need for fast algorithms is obvious for production code, we present an in-depth comparison of the existing algorithms in a unique framework, as well as variations of some of them that improve their efficiency. This comparison involves both sequential and parallel algorithms, and execution times are given with respect to the number of threads, the input image size, and the pixel value quantization. Eventually, a decision tree is given to help the user choose the most appropriate algorithm with respect to the user requirements. To favor reproducible research, an online demo allows the user to upload an image and bench the different algorithms, and the source code of every algorithms has been made available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...