Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
RNA ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580456

Ribosomes translate mRNA into proteins and are essential for every living organism. In eukaryotes both ribosomal subunits are rapidly assembled in a strict hierarchical order, starting in the nucleolus with transcription of a common precursor ribosomal RNA (pre-rRNA). This pre-rRNA encodes three of the four mature rRNAs which are formed by several, consecutive endonucleolytic and exonucleolytic processing steps. Historically, Northern Blots are used to analyze the variety of different pre-rRNA species, only allowing rough length estimations. Although this limitation can be overcome with Primer Extension, both approaches often use radioactivity and are time consuming and costly. Here we present "Riboprobing" a reverse transcription-based workflow extended by linker ligation for easy and fast detection and characterization of various pre-rRNA species and their 5` as well as 3` ends. Using standard molecular biology lab equipment, our technique allows reliable discrimination of pre-rRNA species not resolved by Northern Blotting (e.g.: 27SA2, 27SA3 and 27SB). The method can be successfully used for analysis of total cell extracts as well as purified pre-ribosomes for a straightforward evaluation of the impact of mutant gene versions or inhibitors. In the course of method development, we identified and characterized a hitherto undescribed aberrant pre-rRNA, arising from LiCl inhibition. This pre-rRNA fragment spans from processing site A1 to E, forming a small RNP that is lacking most early joining assembly factors. This finding expands our knowledge of how the cell deals with severe pre-rRNA processing defects and demonstrates the strict requirement for the 5'ETS for the assembly process.

2.
Nat Struct Mol Biol ; 29(9): 942-953, 2022 09.
Article En | MEDLINE | ID: mdl-36097293

The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases.


Adenosine Triphosphatases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , ATPases Associated with Diverse Cellular Activities , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism
...