Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Small ; : e2311115, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38556634

Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.

2.
Biomater Sci ; 11(24): 7826-7837, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37878039

Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable interest. Beyond the widely explored metal and metal oxide nanoparticles, 2D materials, such as MXenes, could present potential benefits because of their inherently large specific surface area. In this study, we highlight the promising radio-enhancement properties of Ti3C2Tx MXenes. We demonstrate that atomically thin layers of titanium carbides (Ti3C2Tx MXenes) are efficiently internalized and well-tolerated by mammalian cells. Contrary to MXenes suspended in aqueous buffers, which fully oxidize within days, yielding rice-grain shaped rutile nanoparticles, the MXenes internalized by cells oxidize at a slower rate. This is consistent with cell-free experiments that have shown slower oxidation rates in cell media and lysosomal buffers compared to dispersants without antioxidants. Importantly, the MXenes exhibit robust radio-enhancement properties, with dose enhancement factors reaching up to 2.5 in human soft tissue sarcoma cells, while showing no toxicity to healthy human fibroblasts. When compared to oxidized MXenes and commercial titanium dioxide nanoparticles, the intact 2D titanium carbide flakes display superior radio-enhancement properties. In summary, our findings offer evidence for the potent radio-enhancement capabilities of Ti3C2Tx MXenes, marking them as a promising candidate for enhancing radiotherapy.


Metal Nanoparticles , Sarcoma , Humans , Animals , X-Rays , Titanium/pharmacology , Sarcoma/radiotherapy , Antioxidants , Oxides , Mammals
3.
Mater Horiz ; 10(10): 4059-4082, 2023 10 02.
Article En | MEDLINE | ID: mdl-37555747

Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.


Metal Nanoparticles , Nanostructures , Radiation-Sensitizing Agents , Metal Nanoparticles/therapeutic use , Gold , Radiation-Sensitizing Agents/therapeutic use , Nanotechnology
4.
Adv Sci (Weinh) ; 10(23): e2301207, 2023 08.
Article En | MEDLINE | ID: mdl-37276437

Postoperative anastomotic leaks are the most feared complications after gastric surgery. For diagnostics clinicians mostly rely on clinical symptoms such as fever and tachycardia, often developing as a result of an already fully developed, i.e., symptomatic, surgical leak. A gastric fluid responsive, dual modality, electronic-free, leak sensor system integrable into surgical adhesive suture support materials is introduced. Leak sensors contain high atomic number carbonates embedded in a polyacrylamide matrix, that upon exposure to gastric fluid convert into gaseous carbon dioxide (CO2 ). CO2 bubbles remain entrapped in the hydrogel matrix, leading to a distinctly increased echogenic contrast detectable by a low-cost and portable ultrasound transducer, while the dissolution of the carbonate species and the resulting diffusion of the cation produces a markedly reduced contrast in computed tomography imaging. The sensing elements can be patterned into a variety of characteristic shapes and can be combined with nonreactive tantalum oxide reference elements, allowing the design of shape-morphing sensing elements visible to the naked eye as well as artificial intelligence-assisted automated detection. In summary, shape-morphing dual modality sensors for the early and robust detection of postoperative complications at deep tissue sites, opening new routes for postoperative patient surveillance using existing hospital infrastructure is reported.


Artificial Intelligence , Carbon Dioxide , Humans , Postoperative Complications , Anastomotic Leak/diagnosis , Tomography, X-Ray Computed
5.
Biomater Sci ; 10(22): 6558-6569, 2022 Nov 08.
Article En | MEDLINE | ID: mdl-36215095

Nano-sized metal organic frameworks (nanoMOFs) have gained increasing importance in biomedicine due to their tunable properties. In addition to their use as carriers in drug delivery, nanoMOFs containing hafnium have been successfully employed as radio-enhancers augmenting damage caused by X-ray irradiation in tumor tissue. While results are encouraging, there is little mechanistic understanding available, and the biological fate of these radio-enhancer nanoparticles remains largely unexplored. Here, we synthesized a selection of group IV metal-based (Hf, Ti, Ti/Zr) nanoMOFs and investigated their cell compatibility and radio-enhancement performance in direct comparison to the corresponding metal oxides. We report surprising radio-enhancement performance of Ti-containing nanoMOFs reaching dose modifying ratios of 3.84 in human sarcoma cells and no relevant dose modification in healthy human fibroblasts. These Ti-based nanoMOFs even outperformed previously reported Hf-based nanoMOFs as well as equimolar group IV metal oxides in direct benchmarking experiments. While group IV nanoMOFs were well-tolerated by cells in the absence of irradiation, the nanoMOFs partially dissolved in lysosomal buffer conditions showing distinctly different chemical stability compared to widely researched group IV oxides (TiO2, ZrO2, and HfO2). Taken together, this study illustrates the promising potential of Ti-based nanoMOFs for radio-enhancement and provides insight into the intracellular fate and stability of group IV nanoMOFs.


Metal-Organic Frameworks , Nanoparticles , Humans , Metal-Organic Frameworks/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Oxides
6.
Nat Commun ; 13(1): 3248, 2022 06 06.
Article En | MEDLINE | ID: mdl-35668122

Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions, has yet to be achieved. Here, we investigate the radioenhancement mechanisms of selected metal oxide nanomaterials (including SiO2, TiO2, WO3 and HfO2), TiN and Au nanoparticles for radiotherapy utilizing photons (150 kVp and 6 MV) and 100 MeV protons. While Au nanoparticles show outstanding radioenhancement properties in kV irradiation settings, where the photoelectric effect is dominant, these properties are attenuated to baseline levels for clinically more relevant irradiation with MV photons and protons. In contrast, HfO2 nanoparticles retain some of their radioenhancement properties in MV photon and proton therapies. Interestingly, TiO2 nanoparticles, which have a comparatively low effective atomic number, show significant radioenhancement efficacies in all three irradiation settings, which can be attributed to the strong radiocatalytic activity of TiO2, leading to the formation of hydroxyl radicals, and nuclear interactions with protons. Taken together, our data enable the extraction of general design criteria for nanoparticle radioenhancers for different treatment modalities, paving the way to performance-optimized nanotherapeutics for precision radiotherapy.


Metal Nanoparticles , Proton Therapy , Gold/pharmacology , Photons , Protons , Silicon Dioxide
7.
Nanoscale ; 14(19): 7163-7173, 2022 May 19.
Article En | MEDLINE | ID: mdl-35343985

Signal stability is crucial for an accurate diagnosis via magnetic particle imaging (MPI). However, MPI-tracer nanoparticles frequently agglomerate during their in vivo applications leading to particle interactions altering the signal. Here, we investigate the influence of such magnetic coupling phenomena on the MPI signal. We prepared Zn0.4Fe2.6O4 nanoparticles by flame spray synthesis and controlled their inter-particle distance by varying SiO2 coating thickness. The silica shell affected the magnetic properties indicating stronger particle interactions for a smaller inter-particle distance. The SiO2-coated Zn0.4Fe2.6O4 outperformed the bare sample in magnetic particle spectroscopy (MPS) in terms of signal/noise, however, the shell thickness itself only weakly influenced the MPS signal. To investigate the importance of magnetic coupling effects in more detail, we benchmarked the MPS signal of the bare and SiO2-coated Zn-ferrites against commercially available PVP-coated Fe3O4 nanoparticles in water and PBS. PBS is known to destabilize nanoparticle colloids mimicking in vivo-like agglomeration. The bare and coated Zn-ferrites showed excellent signal stability, despite their agglomeration in PBS. We attribute this to their process-intrinsic aggregated morphology formed during their flame-synthesis, which generates an MPS signal only little affected by PBS. On the other hand, the MPS signal of commercial PVP-coated Fe3O4 strongly decreased in PBS compared to water, indicating strongly changed particle interactions. The relevance of this effect was further investigated in a human cell model. For PVP-coated Fe3O4, we detected a strong discrepancy between the particle concentration obtained from the MPS signal and the actual concentration determined via ICP-MS. The same trend was observed during their MPI analysis; while SiO2-coated Zn-ferrites could be precisely located in water and PBS, PVP-coated Fe3O4 could not be detected in PBS at all. This drastically limits the sensitivity and also general applicability of these commercial tracers for MPI and illustrates the advantages of our flame-made Zn-ferrites concerning signal stability and ultimately diagnostic accuracy.

8.
Small ; : e2004615, 2020 Oct 08.
Article En | MEDLINE | ID: mdl-33090693

The understanding of living systems and their building blocks relies on the assessment of structure-function relationships at the nanoscale. Although electron microscopy (EM) gives access to ultrastructural imaging with nanometric resolution, the unambiguous localization of specific molecules is challenging. An EM approach capable of localizing biomolecules with respect to the cellular ultrastructure will offer a direct route to the molecular blueprints of biological systems. In an approach departing from conventional correlative imaging, an electron beam may be used as excitation source to generate optical emission with nanometric resolution, that is, cathodoluminescence (CL). Once suitable luminescent labels become available, CL may be harnessed to enable identification of biomolecule labels based on spectral signatures rather than electron density and size. This work presents CL-enabled immunolabeling based on rare-earth element doped nanoparticle-labels allowing specific molecules to be visualized at nanoscale resolution in the context of the cellular ultrastructure. Folic acid decorated nanoparticles exhibiting single particle CL emission are employed to specifically label receptors and identify characteristic receptor clustering on the surface of cancer cells. This demonstration of CL immunotargeting gives access to protein localization in the context of the cellular ultrastructure and paves the way for immunolabeling of multiple proteins in EM.

9.
Adv Sci (Weinh) ; 7(12): 2000370, 2020 Jun.
Article En | MEDLINE | ID: mdl-32596124

Bright, stable, and biocompatible fluorescent contrast agents operating in the second biological window (1000-1350 nm) are attractive for imaging of deep-lying structures (e.g., tumors) within tissues. Ideally, these contrast agents also provide functional insights, such as information on local temperature. Here, water-dispersible barium phosphate nanoparticles doped with Mn5+ are made by scalable, continuous, and sterile flame aerosol technology and explored as fluorescent contrast agents with temperature-sensitive peak emission in the NIR-II (1190 nm). Detailed assessment of their stability, toxicity with three representative cell lines (HeLa, THP-1, NHDF), and deep-tissue imaging down to about 3 cm are presented. In addition, their high quantum yield (up to 34%) combined with excellent temperature sensitivity paves the way for concurrent deep-tissue imaging and nanothermometry, with biologically well-tolerated nanoparticles.

10.
Nanoscale Adv ; 2(7): 2992-3001, 2020 Jul 14.
Article En | MEDLINE | ID: mdl-36132396

Radiotherapy is an integral and highly effective part of cancer therapy, applicable in over 50% of patients affected by cancer. Due to the low specificity of the X-ray irradiation, the maximal radiation dose is greatly limited in order to avoid damage to surrounding healthy tissue. The limitations in applicable dose oftentimes result in the survival of a subpopulation of radio-resistant cells that then cause cancer reoccurence. Approaches based on tumor-targeted high atomic number inorganic nanoparticles have been proposed to locally increase the photoelectric absorption cross-section of tumors relative to healthy tissue. However, the complex interplay between the nanoparticle radio-enhancers and the tumor tissue has led to poor translation of in vitro findings to (pre)clinics. Here, we report the development of a tumor microtissue model along with analytical imaging for the quantitative assessment of nanoparticle-based radio-enhancement as a function of nanoparticle size, uptake and intratissural distribution. The advanced in vitro model exhibits key features of cancerous tissues, including diminished susceptibility to drugs and attenuated response to nanoparticle treatment compared to corresponding conventional 2D cell cultures. Whereas radio-enhancement effects between 2D and 3D cell cultures were comparable for 5 nm gold particles, the limited penetration of 50 nm gold nanoparticles into 3D microtissues led to a significantly reduced radio-enhancement effect in 3D compared to 2D. Taken together, tumor microtissues, which in stark contrast to 2D cell culture exhibit tissue-like features, may provide a valuable high-throughput intermediate pre-selection step in the preclinical translation of nanoparticle-based radio-enhancement therapy designs.

11.
ACS Appl Mater Interfaces ; 11(51): 48341-48351, 2019 Dec 26.
Article En | MEDLINE | ID: mdl-31747521

Extracorporeal blood purification has been applied to artificially support kidney or liver function. However, convection and diffusion based blood purification systems have limited removal rates for high molecular weight and hydrophobic molecules. This limitation is due to the finite volume of infusion and limited membrane permeability, respectively. Adsorption provides an attractive alternative for the removal of higher molecular weight compounds. The use of adsorption resins containing ion exchanging groups to capture specific molecules has become well-established. Instead of stationary adsorption resins, however, ion exchanging polymers may be immobilized on magnetic particles and serve as freely diffusing, mobile, high capacity solid phase of ion exchange chromatography. While small beads with high surface area are attractive in terms of mass transfer and binding, unifying high capturing capacity with rapid and quantitative bead recovery remains an issue. Therefore, most of the current magnetic ion exchangers are based on micron-sized beads or require long times to separate. In addition to unfavorable magnetic recovery rates, the usually poor cytocompatibility limits their applicability in biomedicine. Here, we report on the synthesis and performance of polycationic polymer coated magnetic nanoflowers (MNF) for highly efficacious anion capturing. We demonstrate accurate control over the polymer content and composition on the beads and show its direct influence on colloidal stability, capturing capacity and magnetic separability. We present the removal of clinically relevant targets by capturing bilirubin with capacities 2-fold higher than previous work as well as quantitative heparin removal. Additionally, we illustrate how copolymerization of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) with poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) leads to improved cytocompatibility of the polymer-coated MNF capturing agents while retaining high capturing capacities. Taken together, we present a nanoparticle/polymer material, which upon future in vivo validation, unifies high binding capacities and magnetic separability for rapid toxin capturing and hence fulfills key requirements of clinical utility.

12.
Nano Lett ; 19(9): 6013-6018, 2019 09 11.
Article En | MEDLINE | ID: mdl-31373824

The mechanistic understanding of structure-function relationships in biological systems heavily relies on imaging. While fluorescence microscopy allows the study of specific proteins following their labeling with fluorophores, electron microscopy enables holistic ultrastructural analysis based on differences in electron density. To identify specific proteins in electron microscopy, immunogold labeling has become the method of choice. However, the distinction of immunogold-based protein labels from naturally occurring electron dense granules and the identification of several different proteins in the same sample remain challenging. Correlative cathodoluminescence electron microscopy (CCLEM) bioimaging has recently been suggested to provide an attractive alternative based on labels emitting characteristic light. While luminescence excitation by an electron beam enables subdiffraction imaging, structural damage to the sample by high-energy electrons has been identified as a potential obstacle. Here, we investigate the feasibility of various commonly used luminescent labels for CCLEM bioimaging. We demonstrate that organic fluorophores and semiconductor quantum dots suffer from a considerable loss of emission intensity, even when using moderate beam voltages (2 kV) and currents (0.4 nA). Rare-earth element-doped nanocrystals, in particular Y2O3:Tb3+ and YVO4:Bi3+,Eu3+ nanoparticles with green and orange-red emission, respectively, feature remarkably high brightness and stability in the CCLEM bioimaging setting. We further illustrate how these nanocrystals can be readily differentiated from morphologically similar naturally occurring dense granules based on optical emission, making them attractive nanoparticle core materials for molecular labeling and (multi)color CCLEM.


Luminescent Agents/chemistry , Microscopy, Electron , Molecular Imaging , Quantum Dots/chemistry , Luminescence , Luminescent Measurements , Metals, Rare Earth/chemistry , Nanoparticles/chemistry , X-Ray Diffraction
13.
ACS Appl Mater Interfaces ; 11(1): 437-448, 2019 Jan 09.
Article En | MEDLINE | ID: mdl-30516969

High-Z metal oxide nanoparticles hold promise as imaging probes and radio-enhancers. Hafnium dioxide nanoparticles have recently entered clinical evaluation. Despite promising early clinical findings, the potential of HfO2 as a matrix for multimodal theranostics is yet to be developed. Here, we investigate the physicochemical properties and the potential of HfO2-based nanoparticles for multimodal theranostic imaging. Undoped and lanthanide (Eu3+, Tb3+, and Gd3+)-doped HfO2 nanoparticles were synthesized and functionalized with various moieties including poly(vinylpyrrolidone) (PVP), (3-aminopropyl)triethoxysilane (APTES), and folic acid (FA). We show that different synthesis routes, including direct precipitation, microwave-assisted synthesis, and sol-gel chemistry, allow preparation of hafnium dioxide particles with distinct physicochemical properties. Sol-gel based synthesis allows preparation of uniform nanoparticles with dopant incorporation efficiencies superior to the other two methods. Both luminescence and contrast properties can be tweaked by lanthanide doping. We show that MRI contrast can be unified with radio-enhancement by incorporating lanthanide dopants in the HfO2 matrix. Importantly, ion leaching from the HfO2 host matrix in lysosomal-like conditions was minimal. For Gd:HfO2 nanoparticles, leaching was reduced >10× compared to Gd2O3, and no relevant cytotoxic effects have been observed in monocyte-derived macrophages for nanoparticle concentrations up to 250 µg/mL. Chemical surface modification allows further tailoring of the cyto- and hemocompatibility and enables functionalization with molecular targeting entities, which lead to enhanced cellular uptake. Taken together, the present study illustrates the manifold properties of HfO2-based nanomaterials with prospective clinical utility beyond radio-enhancement.


Hafnium , Lanthanoid Series Elements , Luminescence , Macrophages/metabolism , Magnetic Resonance Imaging , Nanoparticles/chemistry , Oxides , Caco-2 Cells , Hafnium/chemistry , Hafnium/pharmacology , Humans , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/pharmacology , Oxides/chemistry , Oxides/pharmacology
14.
ACS Appl Mater Interfaces ; 9(35): 29571-29579, 2017 Sep 06.
Article En | MEDLINE | ID: mdl-28805365

The magnetic separation of pathogenic compounds from body fluids is an appealing therapeutic concept. Recently, removal of a diverse array of pathogens has been demonstrated using extracorporeal dialysis-type devices. The contact time between the fluid and the magnetic beads in such devices is limited to a few minutes. This poses challenges, particularly if large compounds such as bacteria or cells need to be removed. Here, we report on the feasibility to remove cells from body fluids in a continuous dialysis type of setting. We assessed tumor cell removal efficiencies from physiological fluids with or without white blood cells using a range of different magnetic bead sizes (50-4000 nm), concentrations, and contact times. We show that tumor cells can be quantitatively removed from body fluids within acceptable times (1-2 min) and bead concentrations (0.2 mg per mL). We further present a mathematical model to describe the minimal bead number concentration needed to remove a certain number of cells, in the presence of competing nonspecific uptake. The present study paves the way for investigational studies to assess the therapeutic potential of cell removal by magnetic blood purification in a dialysis-like setting.


Magnetics , Immunomagnetic Separation , Models, Theoretical
...