Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
PLoS Comput Biol ; 20(6): e1012174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900718

RESUMEN

Computational biologists are frequently engaged in collaborative data analysis with wet lab researchers. These interdisciplinary projects, as necessary as they are to the scientific endeavor, can be surprisingly challenging due to cultural differences in operations and values. In this Ten Simple Rules guide, we aim to help dry lab researchers identify sources of friction and provide actionable tools to facilitate respectful, open, transparent, and rewarding collaborations.


Asunto(s)
Biología Computacional , Conducta Cooperativa , Investigadores , Humanos
2.
Elife ; 122024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477670

RESUMEN

Exposure to an acute stressor triggers a complex cascade of neurochemical events in the brain. However, deciphering their individual impact on stress-induced molecular changes remains a major challenge. Here, we combine RNA sequencing with selective pharmacological, chemogenetic, and optogenetic manipulations to isolate the contribution of the locus coeruleus-noradrenaline (LC-NA) system to the acute stress response in mice. We reveal that NA release during stress exposure regulates a large and reproducible set of genes in the dorsal and ventral hippocampus via ß-adrenergic receptors. For a smaller subset of these genes, we show that NA release triggered by LC stimulation is sufficient to mimic the stress-induced transcriptional response. We observe these effects in both sexes, and independent of the pattern and frequency of LC activation. Using a retrograde optogenetic approach, we demonstrate that hippocampus-projecting LC neurons directly regulate hippocampal gene expression. Overall, a highly selective set of astrocyte-enriched genes emerges as key targets of LC-NA activation, most prominently several subunits of protein phosphatase 1 (Ppp1r3c, Ppp1r3d, Ppp1r3g) and type II iodothyronine deiodinase (Dio2). These results highlight the importance of astrocytic energy metabolism and thyroid hormone signaling in LC-mediated hippocampal function and offer new molecular targets for understanding how NA impacts brain function in health and disease.


Asunto(s)
Locus Coeruleus , Norepinefrina , Femenino , Masculino , Animales , Ratones , Encéfalo , Hipocampo , Expresión Génica
3.
bioRxiv ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38496482

RESUMEN

ATAC-seq has emerged as a rich epigenome profiling technique, and is commonly used to identify Transcription Factors (TFs) underlying given phenomena. A number of methods can be used to identify differentially-active TFs through the accessibility of their DNA-binding motif, however little is known on the best approaches for doing so. Here we benchmark several such methods using a combination of curated datasets with various forms of short-term perturbations on known TFs, as well as semi-simulations. We include both methods specifically designed for this type of data as well as some that can be repurposed for it. We also investigate variations to these methods, and identify three particularly promising approaches (chromVAR-limma with critical adjustments, monaLisa and a combination of GC smooth quantile normalization and multivariate modeling). We further investigate the specific use of nucleosome-free fragments, the combination of top methods, and the impact of technical variation. Finally, we illustrate the use of the top methods on a novel dataset to characterize the impact on DNA accessibility of TRAnscription Factor TArgeting Chimeras (TRAFTAC), which can deplete TFs - in our case NFkB - at the protein level.

4.
Math Ann ; 388(1): 731-767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282907

RESUMEN

We investigate norms of spectral projectors on thin spherical shells for the Laplacian on generic tori, including generic rectangular tori. We state a conjecture and partially prove it, improving on previous results concerning arbitrary tori.

5.
Transl Psychiatry ; 13(1): 378, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065942

RESUMEN

Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.


Asunto(s)
Cromatina , Semen , Masculino , Animales , Ratones , Cromatina/genética , Espermatozoides/metabolismo , Epigénesis Genética , Hormonas/metabolismo , Hormonas/farmacología , Dexametasona/farmacología , ARN/metabolismo
6.
Nat Commun ; 14(1): 8177, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071198

RESUMEN

Counteracting the overactivation of glucocorticoid receptors (GR) is an important therapeutic goal in stress-related psychiatry and beyond. The only clinically approved GR antagonist lacks selectivity and induces unwanted side effects. To complement existing tools of small-molecule-based inhibitors, we present a highly potent, catalytically-driven GR degrader, KH-103, based on proteolysis-targeting chimera technology. This selective degrader enables immediate and reversible GR depletion that is independent of genetic manipulation and circumvents transcriptional adaptations to inhibition. KH-103 achieves passive inhibition, preventing agonistic induction of gene expression, and significantly averts the GR's genomic effects compared to two currently available inhibitors. Application in primary-neuron cultures revealed the dependency of a glucocorticoid-induced increase in spontaneous calcium activity on GR. Finally, we present a proof of concept for application in vivo. KH-103 opens opportunities for a more lucid interpretation of GR functions with translational potential.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/farmacología , Receptores de Glucocorticoides/metabolismo
7.
Genome Biol ; 24(1): 119, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198712

RESUMEN

Computational methods represent the lifeblood of modern molecular biology. Benchmarking is important for all methods, but with a focus here on computational methods, benchmarking is critical to dissect important steps of analysis pipelines, formally assess performance across common situations as well as edge cases, and ultimately guide users on what tools to use. Benchmarking can also be important for community building and advancing methods in a principled way. We conducted a meta-analysis of recent single-cell benchmarks to summarize the scope, extensibility, and neutrality, as well as technical features and whether best practices in open data and reproducible research were followed. The results highlight that while benchmarks often make code available and are in principle reproducible, they remain difficult to extend, for example, as new methods and new ways to assess methods emerge. In addition, embracing containerization and workflow systems would enhance reusability of intermediate benchmarking results, thus also driving wider adoption.


Asunto(s)
Benchmarking , Biología Computacional , Biología Computacional/métodos , Flujo de Trabajo
8.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157910

RESUMEN

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Asunto(s)
Neoplasias , Filosofía , Investigación , Estudios Interdisciplinarios
9.
Angiogenesis ; 26(3): 385-407, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36933174

RESUMEN

The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Hipoxia/metabolismo , Isquemia/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/genética , Proteínas Inmediatas-Precoces/metabolismo
10.
Cells ; 12(6)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36980205

RESUMEN

One of the most fundamental discoveries in human biology was that of the existence of essential micronutrients that the body cannot synthesize but nonetheless requires for proper functioning [...].


Asunto(s)
Receptores de Ácido Retinoico , Tretinoina , Humanos , Tretinoina/farmacología , Receptores X Retinoide
11.
Case Rep Oncol ; 16(1): 13-20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743882

RESUMEN

The management of R/M HNSCC is rapidly evolving with new available treatment molecules and combination modalities. Anti-EGFR cetuximab (CTX) and immune checkpoint inhibitors (ICI) can be used either alone or in combination with conventional platinum-based doublet chemotherapy (with taxanes or fluorouracil). No data have been reported to date on the association of doublet chemotherapy concomitantly with both CTX and ICI. We present a case series of patients treated with 4 cycles of quadritherapy, every 3 weeks, including paclitaxel 175 mg/m2, carboplatin AUC 5, pembrolizumab 200 mg, and weekly 250 mg/m2 CTX. All patients achieved an objective response (6 complete responses, 2 partial responses). Clinical response was fast, so 1 patient avoided an emergency tracheostomy for laryngeal dyspnea. Four patients furtherly benefited from cisplatin-based chemoradiotherapy on residual tumor sites after the response to quadritherapy. Adverse events were manageable, except for an ICI-related liver toxicity in a patient. Overall, this short series indicates that a quadruple therapy with carboplatin-paclitaxel-CTX and pembrolizumab seems to be safe and active in patients with R/M HNSCC. This observation could be confirmed through further clinical trials.

12.
Nat Commun ; 13(1): 7010, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385050

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.85 Å structure of the human indirubin-bound AHR complex with the chaperone Hsp90 and the co-chaperone XAP2, reported herein, reveals a closed conformation Hsp90 dimer with AHR threaded through its lumen and XAP2 serving as a brace. Importantly, we disclose the long-awaited structure of the AHR PAS-B domain revealing a unique organisation of the ligand-binding pocket and the structural determinants of ligand-binding specificity and promiscuity of the receptor. By providing structural details of the molecular initiating event leading to AHR activation, our study rationalises almost forty years of biochemical data and provides a framework for future mechanistic studies and structure-guided drug design.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Péptidos y Proteínas de Señalización Intracelular , Receptores de Hidrocarburo de Aril , Humanos , Microscopía por Crioelectrón , Citosol/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo
13.
J Mol Endocrinol ; 69(3): 377-390, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900852

RESUMEN

Retinoid X receptors (RXRα, ß, and γ) are essential members of the nuclear receptor (NR) superfamily of ligand-dependent transcriptional regulators that bind DNA response elements and control the expression of large gene networks. As obligate heterodimerization partners of many NRs, RXRs are involved in a variety of pathophysiological processes. However, despite this central role in NR signaling, there is still no consensus regarding the precise biological functions of RXRs and the putative role of the endogenous ligands (rexinoids) previously proposed for these receptors. Based on available crystal structures, we introduced a series of amino acid substitutions into the ligand-binding pocket of all three RXR subtypes in order to alter their binding properties. Subsequent characterization using a battery of cell-based and in vitro assays led to the identification of a double mutation abolishing the binding of any ligand while keeping the other receptor functions intact and a triple mutation that selectively impairs interaction with natural rexinoids but not with some synthetic ligands. We also report crystal structures that help understand the specific ligand-binding capabilities of both variants. These RXR variants, either fully disabled for ligand binding or retaining the property of being activated by synthetic compounds, represent unique tools that could be used in future studies to probe the presence of active endogenous rexinoids in tissues/organs and to investigate their role in vivo. Last, we provide data suggesting a possible involvement of fatty acids in the weak interaction of RXRs with corepressors.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Regulación de la Expresión Génica , Ligandos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores X Retinoide/química , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo
14.
Nucleic Acids Res ; 50(W1): W280-W289, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609985

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that are among the main post-transcriptional regulators of gene expression. A number of data collections and prediction tools have gathered putative or confirmed targets of these regulators. It is often useful, for discovery and validation, to harness such collections to perform target enrichment analysis in given transcriptional signatures or gene-sets in order to predict involved miRNAs. While several methods have been proposed to this end, a flexible and user-friendly interface for such analyses using various approaches and collections is lacking. enrichMiR (https://ethz-ins.org/enrichMiR/) addresses this gap by enabling users to perform a series of enrichment tests, based on several target collections, to rank miRNAs according to their likely involvement in the control of a given transcriptional signature or gene-set. enrichMiR results can furthermore be visualised through interactive and publication-ready plots. To guide the choice of the appropriate analysis method, we benchmarked various tests across a panel of experiments involving the perturbation of known miRNAs. Finally, we showcase enrichMiR functionalities in a pair of use cases.


Asunto(s)
MicroARNs , Programas Informáticos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
15.
Nat Commun ; 13(1): 1824, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383160

RESUMEN

The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an interactive app to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress.


Asunto(s)
Biosíntesis de Proteínas , Estrés Psicológico , Animales , Ansiedad/genética , Hipocampo/metabolismo , Ratones , ARN Mensajero/metabolismo
16.
Elife ; 112022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290180

RESUMEN

The proper development and function of neuronal circuits rely on a tightly regulated balance between excitatory and inhibitory (E/I) synaptic transmission, and disrupting this balance can cause neurodevelopmental disorders, for example, schizophrenia. MicroRNA-dependent gene regulation in pyramidal neurons is important for excitatory synaptic function and cognition, but its role in inhibitory interneurons is poorly understood. Here, we identify miR138-5p as a regulator of short-term memory and inhibitory synaptic transmission in the mouse hippocampus. Sponge-mediated miR138-5p inactivation specifically in mouse parvalbumin (PV)-expressing interneurons impairs spatial recognition memory and enhances GABAergic synaptic input onto pyramidal neurons. Cellular and behavioral phenotypes associated with miR138-5p inactivation are paralleled by an upregulation of the schizophrenia (SCZ)-associated Erbb4, which we validated as a direct miR138-5p target gene. Our findings suggest that miR138-5p is a critical regulator of PV interneuron function in mice, with implications for cognition and SCZ. More generally, they provide evidence that microRNAs orchestrate neural circuit development by fine-tuning both excitatory and inhibitory synaptic transmission.


Asunto(s)
Memoria a Corto Plazo , MicroARNs , Animales , Hipocampo/fisiología , Interneuronas/fisiología , Ratones , MicroARNs/genética , Parvalbúminas/metabolismo
17.
Science ; 375(6582): eabe8244, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175820

RESUMEN

Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.


Asunto(s)
Disruptores Endocrinos/toxicidad , Trastornos del Desarrollo del Lenguaje/epidemiología , Trastornos del Neurodesarrollo/epidemiología , Efectos Tardíos de la Exposición Prenatal , Transcriptoma/efectos de los fármacos , Animales , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Preescolar , Estrógenos/metabolismo , Femenino , Fluorocarburos/análisis , Fluorocarburos/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Locomoción/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Trastornos del Neurodesarrollo/genética , Organoides , Fenoles/análisis , Fenoles/toxicidad , Ácidos Ftálicos/análisis , Ácidos Ftálicos/toxicidad , Embarazo , Medición de Riesgo , Hormonas Tiroideas/metabolismo , Xenopus laevis , Pez Cebra
18.
Bioinformatics ; 38(9): 2466-2473, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35188178

RESUMEN

MOTIVATION: microRNAs are important post-transcriptional regulators of gene expression, but the identification of functionally relevant targets is still challenging. Recent research has shown improved prediction of microRNA-mediated repression using a biochemical model combined with empirically-derived k-mer affinity predictions; however, these findings are not easily applicable. RESULTS: We translate this approach into a flexible and user-friendly bioconductor package, scanMiR, also available through a web interface. Using lightweight linear models, scanMiR efficiently scans for binding sites, estimates their affinity and predicts aggregated transcript repression. Moreover, flexible 3'-supplementary alignment enables the prediction of unconventional interactions, such as bindings potentially leading to target-directed microRNA degradation or slicing. We showcase scanMiR through a systematic scan for such unconventional sites on neuronal transcripts, including lncRNAs and circRNAs. Finally, in addition to the main bioconductor package implementing these functions, we provide a user-friendly web application enabling the scanning of sequences, the visualization of predicted bindings and the browsing of predicted target repression. AVAILABILITY AND IMPLEMENTATION: scanMiR and companion packages are implemented in R, released under the GPL-3 and accessible on Bioconductor (https://bioconductor.org/packages/release/bioc/html/scanMiR.html) as well as through a shiny web server (https://ethz-ins.org/scanMiR/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , Programas Informáticos , Sitios de Unión , Factores de Transcripción
19.
EMBO Rep ; 22(10): e52094, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34396684

RESUMEN

Synaptic scaling is a form of homeostatic plasticity which allows neurons to adjust their action potential firing rate in response to chronic alterations in neural activity. Synaptic scaling requires profound changes in gene expression, but the relative contribution of local and cell-wide mechanisms is controversial. Here we perform a comprehensive multi-omics characterization of the somatic and process compartments of primary rat hippocampal neurons during synaptic scaling. We uncover both highly compartment-specific and correlating changes in the neuronal transcriptome and proteome. Whereas downregulation of crucial regulators of neuronal excitability occurs primarily in the somatic compartment, structural components of excitatory postsynapses are mostly downregulated in processes. Local inhibition of protein synthesis in processes during scaling is confirmed for candidate synaptic proteins. Motif analysis further suggests an important role for trans-acting post-transcriptional regulators, including RNA-binding proteins and microRNAs, in the local regulation of the corresponding mRNAs. Altogether, our study indicates that, during synaptic scaling, compartmentalized gene expression changes might co-exist with neuron-wide mechanisms to allow synaptic computation and homeostasis.


Asunto(s)
Plasticidad Neuronal , Sinapsis , Animales , Expresión Génica , Regulación de la Expresión Génica , Plasticidad Neuronal/genética , Neuronas , Ratas
20.
Essays Biochem ; 65(6): 887-899, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34296739

RESUMEN

Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs. They are critically involved in the regulation of a wide variety of essential biological processes, such as embryogenesis and organogenesis, apoptosis, reproduction, vision, and the growth and differentiation of normal and neoplastic cells in vertebrates. The ability of these small molecules to control the expression of several hundred genes through binding to nuclear ligand-dependent transcription factors accounts for most of their functions. Three retinoic acid receptor (RARα,ß,γ) and three retinoid X receptor (RXRα,ß,γ) subtypes form a variety of RXR-RAR heterodimers that have been shown to mediate the pleiotropic effects of retinoids through the recruitment of high-molecular weight co-regulatory complexes to response-element DNA sequences found in the promoter region of their target genes. Hence, heterodimeric retinoid receptors are multidomain entities that respond to various incoming signals, such as ligand and DNA binding, by allosteric structural alterations which are the basis of further signal propagation. Here, we provide an overview of the current state of knowledge with regard to the structural mechanisms by which retinoids and DNA response elements act as allosteric effectors that may combine to finely tune RXR-RAR heterodimers activity.


Asunto(s)
Receptores de Ácido Retinoico , Retinoides , Animales , ADN , Ligandos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/genética , Retinoides/metabolismo , Retinoides/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...