Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Int J Infect Dis ; 142: 106994, 2024 May.
Article En | MEDLINE | ID: mdl-38447753

OBJECTIVES: Despite successful human immunodeficiency virus (HIV) control with combination antiretroviral therapy (cART), individuals with HIV still face health risks, including cancers, cardiovascular and neurocognitive diseases. An HIV protein, Tat, is potentially involved in these HIV-related diseases. Previous studies demonstrated circulating Tat in the blood of untreated people with HIV. Here, we measured Tat levels in the serum of cART-treated people with HIV to examine the effect of cART on Tat production. METHODS: Serum samples from 63 HIV-positive and 20 HIV-seronegative individuals were analyzed using an ELISA assay that detected Tat concentrations above 2.5 ng/mL. RESULTS: Among HIV-positive individuals, the Tat level ranged from 0 to 14 ng/mL. 25.4% (16 out of 63) exceeded the 2.5 ng/mL cut-off, with a median HIV Tat level of 4.518 [3.329-8.120] ng/mL. No correlation was revealed between Tat levels and CD4+ T cell counts, serum HIV RNA, p24 antigen, or anti-Tat levels. CONCLUSIONS: Despite cART, circulating HIV Tat persists and may contribute to HIV-related diseases. This emphasizes the need for further research on the mechanisms of Tat action in non-infected cells where it can penetrate upon circulation in the blood.


HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , CD4-Positive T-Lymphocytes , CD4 Lymphocyte Count
2.
J Med Virol ; 96(2): e29423, 2024 Feb.
Article En | MEDLINE | ID: mdl-38285479

Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.


B-Lymphocytes , Epstein-Barr Virus Infections , HIV Infections , Lymphoma , tat Gene Products, Human Immunodeficiency Virus , Humans , Down-Regulation , Herpesvirus 4, Human/genetics , HIV Infections/genetics , HIV-1/genetics , HLA-DRB1 Chains , tat Gene Products, Human Immunodeficiency Virus/genetics
3.
NAR Cancer ; 5(3): zcad049, 2023 Sep.
Article En | MEDLINE | ID: mdl-37750169

Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.

4.
J Med Virol ; 95(3): e28633, 2023 03.
Article En | MEDLINE | ID: mdl-36866703

Burkitt lymphoma (BL) is a B cell malignancy associated with the Epstein-Barr virus (EBV). Most BL cases are characterized by a t(8;14) chromosomal translocation involving the MYC oncogene and the immunoglobulin heavy chain gene (IGH). The role of EBV in promoting this translocation remains largely unknown. Here we provide the experimental evidence that EBV reactivation from latency leads to an increase in the proximity between the MYC and IGH loci, otherwise located far away in the nuclear space both in B-lymphoblastoid cell lines and in patients' B-cells. Specific DNA damage within the MYC locus, followed by the MRE11-dependent DNA repair plays a role in this process. Using a CRISPR/Cas9-based B cell model to induce specific DNA double strand breaks in MYC and IGH loci, we have shown that the MYC-IGH proximity induced by EBV reactivation leads to an increased t(8;14) translocation frequency.


Burkitt Lymphoma , Epstein-Barr Virus Infections , Humans , Herpesvirus 4, Human/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Genes, Immunoglobulin Heavy Chain
6.
Gene Ther ; 30(1-2): 167-171, 2023 02.
Article En | MEDLINE | ID: mdl-32999452

B-cell lines and primary PBMCs are notoriously hard to transfect, thus making genome editing, ectopic gene expression, or gene silencing experiments particularly tedious. Here we propose a novel efficient and reproducible protocol for electrotransfection of lymphoblastoid, B-cell lymphoma, leukemia cell lines, and B cells from PBMCs. The proposed protocol requires neither costly equipment nor expensive reagents; it can be used with small or large plasmids. Transfection and viability rates of about 79% and 58%, respectively, have been routinely achieved by optimizing the salt concentration in the electrotransfection medium and the amount of plasmid used. A validation of the protocol was obtained via the generation of a TP53-/- RPMI8866 lymphoblastoid cell line which should prove useful in future hematological and blood cancer studies.


Ectopic Gene Expression , Gene Editing , Humans , Gene Editing/methods , Transfection , Cell Line , Plasmids
7.
Cancers (Basel) ; 14(20)2022 Oct 18.
Article En | MEDLINE | ID: mdl-36291894

Chromosomal translocations are products of the illegitimate repair of DNA double-strand breaks (DSBs). Their formation can bring about significant structural and molecular changes in the cell that can be physiologically and pathologically relevant. The induced changes may lead to serious and life-threatening diseases such as cancer. As a growing body of evidence suggests, the formation of chromosomal translocation is not only affected by the mere close spatial proximity of gene loci as potential translocation partners. Several factors may affect formation of chromosomal translocations, including chromatin motion to the potential sources of DSBs in the cell. While these can be apparently random events, certain chromosomal translocations appear to be cell-type-specific. In this review, we discuss how chromosomal translocations are formed and explore how different cellular factors contribute to their formation.

8.
PeerJ ; 10: e13986, 2022.
Article En | MEDLINE | ID: mdl-36275462

An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.


HIV-1 , Lymphoma, B-Cell , Humans , HIV-1/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , Ectopic Gene Expression , Lymphoma, B-Cell/genetics , Gene Expression
9.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article En | MEDLINE | ID: mdl-33557396

HIV-1 infects T cells, but the most frequent AIDS-related lymphomas are of B-cell origin. Molecular mechanisms of HIV-1-induced oncogenic transformation of B cells remain largely unknown. HIV-1 Tat protein may participate in this process by penetrating and regulating gene expression in B cells. Both immune and cancer cells can reprogram communications between extracellular signals and intracellular signaling pathways via the Akt/mTORC1 pathway, which plays a key role in the cellular response to various stimuli including viral infection. Here, we investigated the role of HIV-1 Tat on the modulation of the Akt/mTORC1 pathway in B cells. We found that HIV-1 Tat activated the Akt/mTORC1 signaling pathway; this leads to aberrant activation of activation-induced cytidine deaminase (AICDA) due to inhibition of the AICDA transcriptional repressors c-Myb and E2F8. These perturbations may ultimately lead to an increased genomic instability and proliferation that might cause B cell malignancies.


B-Lymphocytes/pathology , Cytidine Deaminase/metabolism , DNA Damage , Gene Expression Regulation , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Cytidine Deaminase/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Reactive Oxygen Species/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcriptional Activation , tat Gene Products, Human Immunodeficiency Virus/genetics
10.
Nat Commun ; 12(1): 41, 2021 01 04.
Article En | MEDLINE | ID: mdl-33397980

Mammalian and Drosophila genomes are partitioned into topologically associating domains (TADs). Although this partitioning has been reported to be functionally relevant, it is unclear whether TADs represent true physical units located at the same genomic positions in each cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-C maps in individual Drosophila genomes. These maps demonstrate chromatin compartmentalization at the megabase scale and partitioning of the genome into non-hierarchical TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a high level of active epigenetic marks. Polymer simulations demonstrate that chromatin folding is best described by the random walk model within TADs and is most suitably approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe prominent cell-to-cell variability in the long-range contacts between either active genome loci or between Polycomb-bound regions, suggesting an important contribution of stochastic processes to the formation of the Drosophila 3D genome.


Drosophila melanogaster/genetics , Genome, Insect , Nucleic Acid Conformation , Animals , Biopolymers/metabolism , Chromatin/genetics , Databases, Genetic , Epigenesis, Genetic , Haploidy , Models, Genetic , Stochastic Processes , X Chromosome/genetics
11.
Cancers (Basel) ; 12(6)2020 Jun 05.
Article En | MEDLINE | ID: mdl-32517128

Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.

12.
Int J Cancer ; 146(10): 2666-2679, 2020 05 15.
Article En | MEDLINE | ID: mdl-31603989

HIV infected people are at higher risk of developing cancer, although it is globally diminished in the era of highly active antiretroviral treatment (HAART). Recently, antioncogenic properties of some HAART drugs were discovered. We discuss the role of HAART in the prevention and improvement of treatment outcomes of cancers in HIV-infected people. We describe different trends in HAART-cancer relationships: cancer-predisposing as well as cancer-preventing. We cover the roles of particular drug regimens in cancer prevention. We also describe the causes of cancer treatment with HAART drugs in HIV-negative people, including ongoing clinical studies that may directly point to a possible independent anti-oncogenic activity of HAART drugs. We conclude that despite potent antioncogenic activities of every class of HAART drugs reported in preclinical models, the evidence to date indicates that their independent clinical impact in HIV-infected people is limited. Improved cancer prevention strategies besides HAART are needed to reduce HIV-cancer-related mortality.


Antiretroviral Therapy, Highly Active , HIV Infections/complications , HIV Infections/drug therapy , Neoplasms/complications , Neoplasms/drug therapy , Anti-HIV Agents/therapeutic use , HIV-1 , Humans
13.
Article En | MEDLINE | ID: mdl-31561891

1,4-Dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. AV-153-Na, an antimutagenic and DNA-repair enhancing compound was shown to interact with DNA by intercalation. Here we studied DNA binding of several AV-153 salts to evaluate the impact of AV-153 modifications on its DNA binding capacity, the ability to scavenge the peroxynitrite, to protect HeLa and B-cells cells against DNA damage. Affinity of the AV-153 salts to DNA measured by a fluorescence assay was dependent on the metal ion forming a salt in position 4 of the 1,4-DHP, and it decreased as follows: Mg > Na > Ca > Li > Rb > K. AV-153-K and AV-153-Rb could not react chemically with peroxynitrite as opposed to AV-153-Mg and AV-153-Ca, the latter increased the decomposition rate of peroxynitrite. AV-153-Na and AV-153-Ca effectively reduced DNA damage induced by peroxynitrite in HeLa cells, while AV-153-K and AV-153-Rb were less effective, AV-153-Li did not protect the DNA, and AV-153-Mg even caused DNA damage itself. The Na, K, Ca and Mg AV-153 salts were also shown to reduce the level of DNA damage in human B-cells from healthy donors. Thus, metal ions modify both DNA-binding and DNA-protecting effects of the AV-153 salts.


Antioxidants/pharmacology , DNA Damage/drug effects , Dihydropyridines/pharmacology , Intercalating Agents/pharmacology , Metals/pharmacology , Niacin/analogs & derivatives , Antioxidants/toxicity , B-Lymphocytes/drug effects , Comet Assay , DNA Breaks, Single-Stranded , DNA Repair , Dihydropyridines/toxicity , Drug Interactions , HeLa Cells , Humans , Intercalating Agents/toxicity , Niacin/pharmacology , Niacin/toxicity , Oxidative Stress , Peroxynitrous Acid/toxicity , Recombinant Proteins/pharmacology , Single-Cell Analysis , tat Gene Products, Human Immunodeficiency Virus/metabolism , tat Gene Products, Human Immunodeficiency Virus/pharmacology
14.
J Cell Physiol ; 234(9): 15678-15685, 2019 Sep.
Article En | MEDLINE | ID: mdl-30701532

Individuals infected with human immunodeficiency virus (HIV) are at increased risk for Burkitt lymphoma, a B-cell malignancy which occurs after a chromosomal translocation rearranging the MYC oncogene with an immunoglobulin gene locus, usually the IGH heavy chain gene locus. We have previously reported that the HIV protein Tat which circulates in all HIV-positive individuals whatever their immune status caused an increased rate of colocalization between IGH and MYC in B-cells nuclei. We here present in vitro evidence that Tat activates the expression of the AICDA gene that encodes the activation-induced cytidine deaminase whose physiological function is to create double-strand breaks for immunoglobulin gene maturation. In the presence of Tat, DNA damage was observed concomitantly in both MYC and IGH, followed by DNA repair by nonhomologous end joining. AICDA was further found overexpressed in vivo in peripheral blood B-cells from HIV-infected individuals. Thus, the capacity of Tat to spontaneously penetrate B-cells could be sufficient to favor the occurrence of MYC-IGH oncogenic rearrangements during erroneous repair, a plausible cause for the increased incidence of Burkitt lymphoma in the HIV-infected population.

15.
Trends Biotechnol ; 36(2): 147-159, 2018 02.
Article En | MEDLINE | ID: mdl-29157536

Genome editing using engineered nucleases (meganucleases, zinc finger nucleases, transcription activator-like effector nucleases) has created many recent breakthroughs. Prescreening for efficiency and specificity is a critical step prior to using any newly designed genome editing tool for experimental purposes. The current standard screening methods of evaluation are based on DNA sequencing or use mismatch-sensitive endonucleases. They can be time-consuming and costly or lack reproducibility. Here, we review and critically compare standard techniques with those more recently developed in terms of reliability, time, cost, and ease of use.


CRISPR-Cas Systems , Endonucleases/genetics , Gene Editing/methods , Genetic Engineering/methods , Animals , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Endonucleases/metabolism , Gene Editing/instrumentation , Genetic Engineering/instrumentation , High-Throughput Nucleotide Sequencing/methods , Homologous Recombination , Humans , Plants/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
16.
Redox Biol ; 15: 97-108, 2018 05.
Article En | MEDLINE | ID: mdl-29220699

Human immunodeficiency virus (HIV) infection is associated with B-cell malignancies in patients though HIV-1 is not able to infect B-cells. The rate of B-cell lymphomas in HIV-infected individuals remains high even under the combined antiretroviral therapy (cART) that reconstitutes the immune function. Thus, the contribution of HIV-1 to B-cell oncogenesis remains enigmatic. HIV-1 induces oxidative stress and DNA damage in infected cells via multiple mechanisms, including viral Tat protein. We have detected elevated levels of reactive oxygen species (ROS) and DNA damage in B-cells of HIV-infected individuals. As Tat is present in blood of infected individuals and is able to transduce cells, we hypothesized that it could induce oxidative DNA damage in B-cells promoting genetic instability and malignant transformation. Indeed, incubation of B-cells isolated from healthy donors with purified Tat protein led to oxidative stress, a decrease in the glutathione (GSH) levels, DNA damage and appearance of chromosomal aberrations. The effects of Tat relied on its transcriptional activity and were mediated by NF-κB activation. Tat stimulated oxidative stress in B-cells mostly via mitochondrial ROS production which depended on the reverse electron flow in Complex I of respiratory chain. We propose that Tat-induced oxidative stress, DNA damage and chromosomal aberrations are novel oncogenic factors favoring B-cell lymphomas in HIV-1 infected individuals.


DNA Damage/genetics , HIV-1/genetics , Oxidative Stress/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , B-Lymphocytes/pathology , B-Lymphocytes/virology , Glutathione/metabolism , HIV-1/pathogenicity , Humans , Mitochondria/genetics , Mitochondria/pathology , NF-kappa B/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , tat Gene Products, Human Immunodeficiency Virus/metabolism
17.
Mol Ther Methods Clin Dev ; 5: 43-50, 2017 Jun 16.
Article En | MEDLINE | ID: mdl-28480303

Despite rapid progress, many problems and limitations persist and limit the applicability of gene-editing techniques. Making use of meganucleases, TALENs, or CRISPR/Cas9-based tools requires an initial step of pre-screening to determine the efficiency and specificity of the designed tools. This step remains time consuming and material consuming. Here we propose a simple, cheap, reliable, time-saving, and highly sensitive method to evaluate a given gene-editing tool based on its capacity to induce chromosomal translocations when combined with a reference engineered nuclease. In the proposed technique, designated engineered nuclease-induced translocations (ENIT), a plasmid coding for the DNA-editing tool to be tested is co-transfected into carefully chosen target cells along with that for an engineered nuclease of known specificity and efficiency. If the new enzyme efficiently cuts within the desired region, then specific chromosomal translocations will be generated between the two targeted genomic regions and be readily detectable by a one-step PCR or qPCR assay. The PCR product thus obtained can be directly sequenced, thereby determining the exact position of the double-strand breaks induced by the gene-editing tools. As a proof of concept, ENIT was successfully tested in different cell types and with different meganucleases, TALENs, and CRISPR/Cas9-based editing tools.

18.
J Cell Biochem ; 117(7): 1506-10, 2016 07.
Article En | MEDLINE | ID: mdl-26873538

The immunoglobulin heavy chain (IGH) locus is submitted to intra-chromosomal DNA breakages and rearrangements during normal B cell differentiation that create a risk for illegitimate inter-chromosomal translocations leading to a variety of B-cell malignancies. In most Burkitt's and Mantle Cell lymphomas, specific chromosomal translocations juxtapose the IGH locus with a CMYC or Cyclin D1 (CCND1) gene, respectively. 3D-fluorescence in situ hybridization was performed on normal peripheral B lymphocytes induced to mature in vitro from a naive state to the stage where they undergo somatic hypermutation (SHM) and class switch recombination (CSR). The CCND1 genes were found very close to the IGH locus in naive B cells and further away after maturation. In contrast, the CMYC alleles became localized closer to an IGH locus at the stage of SHM/CSR. The colocalization observed between the two oncogenes and the IGH locus at successive stages of B-cell differentiation occurred in the immediate vicinity of the nucleolus, consistent with the known localization of the RAGs and AID enzymes whose function has been demonstrated in IGH physiological rearrangements. We propose that the chromosomal events leading to Mantle Cell lymphoma and Burkitt's lymphoma are favored by the colocalization of CCND1 and CMYC with IGH at the time the concerned B cells undergo VDJ recombination or SHM/CSR, respectively. J. Cell. Biochem. 117: 1506-1510, 2016. © 2016 Wiley Periodicals, Inc.


B-Lymphocytes/metabolism , Cell Differentiation/physiology , Cyclin D1/metabolism , Gene Rearrangement, B-Lymphocyte, Heavy Chain/physiology , Immunoglobulin Heavy Chains/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Alleles , B-Lymphocytes/cytology , Cyclin D1/genetics , Genetic Loci/physiology , Humans , Immunoglobulin Heavy Chains/genetics , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins c-myc/genetics
19.
Cell Mol Life Sci ; 73(3): 589-601, 2016 Feb.
Article En | MEDLINE | ID: mdl-26507246

Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.


Gene Expression Regulation, Viral , tat Gene Products, Human Immunodeficiency Virus/physiology , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , HIV Infections/complications , Humans , Models, Molecular , Nuclear Envelope/metabolism , Nuclear Localization Signals , tat Gene Products, Human Immunodeficiency Virus/chemistry
20.
Sci Rep ; 4: 6803, 2014 Oct 30.
Article En | MEDLINE | ID: mdl-25354905

Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification.


Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Viruses/classification , Animals , Cell Line , Enterovirus/classification , Humans , Poliovirus/classification , Poliovirus/isolation & purification , Reproducibility of Results , Serogroup , Viral Proteins/chemistry , Viruses/isolation & purification
...