Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(6): 3464-3474, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743442

RESUMEN

Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.


Asunto(s)
Criogeles , Criogeles/química , Porosidad , Péptidos/química , Hidrogeles/química , Hidrogeles/síntesis química , Materiales Biocompatibles/química , Polimerizacion , Polímeros/química , Fuerza Compresiva , Matriz Extracelular/química
2.
ACS Appl Bio Mater ; 7(5): 3258-3270, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38593039

RESUMEN

Reliable in vitro models closely resembling native tissue are urgently needed for disease modeling and drug screening applications. Recently, conductive biomaterials have received increasing attention in the development of in vitro models as they permit exogenous electrical signals to guide cells toward a desired cellular response. Interestingly, they have demonstrated that they promote cellular proliferation and adhesion even without external electrical stimulation. This paper describes the development of a conductive, fully synthetic hydrogel based on hybrids of the peptide-modified polyisocyanide (PIC-RGD) and the relatively conductive poly(aniline-co-N-(4-sulfophenyl)aniline) (PASA) and its suitability as the in vitro matrix. We demonstrate that incorporating PASA enhances the PIC-RGD hydrogel's electroactive nature without significantly altering the fibrous architecture and nonlinear mechanics of the PIC-RGD network. The biocompatibility of our model was assessed through phenotyping cultured human foreskin fibroblasts (HFF) and murine C2C12 myoblasts. Immunofluorescence analysis revealed that PIC-PASA hydrogels inhibit the fibrotic behavior of HFFs while promoting myogenesis in C2C12 cells without electrical stimulation. The composite PIC-PASA hydrogel can actively change the cell fate of different cell types, providing an attractive tool to improve skin and muscle repair.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Ensayo de Materiales , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Animales , Ratones , Desarrollo de Músculos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Tamaño de la Partícula , Fibroblastos/efectos de los fármacos , Línea Celular , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Conductividad Eléctrica
3.
Angew Chem Int Ed Engl ; 56(12): 3309-3313, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28194834

RESUMEN

Sialic acid sugars that terminate cell-surface glycans form the ligands for the sialic acid binding immunoglobulin-like lectin (Siglec) family, which are immunomodulatory receptors expressed by immune cells. Interactions between sialic acid and Siglecs regulate the immune system, and aberrations contribute to pathologies like autoimmunity and cancer. Sialic acid/Siglec interactions between living cells are difficult to study owing to a lack of specific tools. Here, we report a glycoengineering approach to remodel the sialic acids of living cells and their binding to Siglecs. Using bioorthogonal chemistry, a library of cells with more than sixty different sialic acid modifications was generated that showed dramatically increased binding toward the different Siglec family members. Rational design reduced cross-reactivity and led to the discovery of three selective Siglec-5/14 ligands. Furthermore, glycoengineered cells carrying sialic acid ligands for Siglec-3 dampened the activation of Siglec-3+ monocytic cells through the NF-κB and IRF pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...