Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38879794

Aquafeed additive quality and quantity remain pivotal factors that constrain the sustainability and progress of aquaculture feed development. This study investigates the impact of incorporating the benthic diatom Amphora coffeaeformis into the diet of Nile tilapia (Oreochromis niloticus) broodstock, on the blood biochemistry, steroid hormone (SH) levels and seed production efficiency. Broodstock females displaying mature ovary indications were initially combined with males at a ratio of three females to one male. A total of 384 adult Nile tilapia (288 females and 96 males) were used, with 32 fish (24 females and eight males) assigned to each of 12 concrete tanks (8 m³; 2 m × 4 m × 1 m), with three replicate tanks for each dietary treatment, throughout a 14-day spawning cycle until egg harvest. Fish were fed one of four different dietary treatments: AM0% (control diet), and AM2%, AM4% and AM6% enriched with the diatom A. coffeaeformis at levels of 20, 40 and 60 g/kg of diet respectively. At the trial's conclusion, total protein, albumin, triglyceride and creatinine), SHs (follicle-stimulating hormone, luteinizing hormone, free testosterone, total testosterone, progesterone and prolactin) and seeds production efficiency of Nile tilapia improved significantly (p < 0.05) in alignment with the increment of A. coffeaeformis supplementation. The findings propose that including A. coffeaeformis at levels ranging from 4% to 6% could be effectively employed as a feed additive during the Nile tilapia broodstock's spawning season.

2.
Mar Drugs ; 21(8)2023 Aug 02.
Article En | MEDLINE | ID: mdl-37623718

The marine environment is a rich source of bioactive compounds. Therefore, the sea cucumber was isolated from the Red Sea at the Al-Ain Al-Sokhna coast and it was identified as surf redfish (Actinopyga mauritiana). The aqueous extract of the surf redfish was utilized as an ecofriendly, novel and sustainable approach to fabricate zinc oxide nanoparticles (ZnO-NPs). The biosynthesized ZnO-NPs were physico-chemically characterized and evaluated for their possible antibacterial and insecticidal activities. Additionally, their safety in the non-target organism model (Nile tilapia fish) was also investigated. ZnO-NPs were spherical with an average size of 24.69 ± 11.61 nm and had a peak at 350 nm as shown by TEM and UV-Vis, respectively. XRD analysis indicated a crystalline phase of ZnO-NPs with an average size of 21.7 nm. The FTIR pattern showed biological residues from the surf redfish extract, highlighting their potential role in the biosynthesis process. DLS indicated a negative zeta potential (-19.2 mV) of the ZnO-NPs which is a good preliminary indicator for their stability. ZnO-NPs showed larvicidal activity against mosquito Culex pipiens (LC50 = 15.412 ppm and LC90 = 52.745 ppm) and a potent adulticidal effect to the housefly Musca domestica (LD50 = 21.132 ppm and LD90 = 84.930 ppm). Tested concentrations of ZnO-NPs showed strong activity against the 3rd larval instar. Topical assays revealed dose-dependent adulticidal activity against M. domestica after 24 h of treatment with ZnO-NPs. ZnO-NPs presented a wide antibacterial activity against two fish-pathogen bacteria, Pseudomonas aeruginosa and Aeromonas hydrophila. Histopathological and hematological investigations of the non-target organism, Nile tilapia fish exposed to 75-600 ppm ZnO-NPs provide dose-dependent impacts. Overall, data highlighted the potential applications of surf redfish-mediated ZnO-NPs as an effective and safe way to control mosquitoes, houseflies and fish pathogenic bacteria.


Cichlids , Culicidae , Nanoparticles , Sea Cucumbers , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Aeromonas hydrophila , Anti-Bacterial Agents/pharmacology
3.
Animals (Basel) ; 11(7)2021 Jun 25.
Article En | MEDLINE | ID: mdl-34201914

Pesticides are chemicals used to control pests, such as aquatic weeds, insects, aquatic snails, and plant diseases. They are extensively used in forestry, agriculture, veterinary practices, and of great public health importance. Pesticides can be categorized according to their use into three major types (namely insecticides, herbicides, and fungicides). Water contamination by pesticides is known to induce harmful impacts on the production, reproduction, and survivability of living aquatic organisms, such as algae, aquatic plants, and fish (shellfish and finfish species). The literature and information present in this review article facilitate evaluating the toxic effects from exposure to various fish species to different concentrations of pesticides. Moreover, a brief overview of sources, classification, mechanisms of action, and toxicity signs of pyrethroid insecticides in several fish species will be illustrated with special emphasis on Cypermethrin toxicity.

...