Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(48): e2309205120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988467

RESUMEN

Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.


Asunto(s)
Autoinmunidad , Encefalomielitis Autoinmune Experimental , Ratones , Animales , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Inflamación/metabolismo , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/genética , Receptores de Antígenos de Linfocitos T/genética , Ubiquitina-Proteína Ligasas
2.
Front Immunol ; 14: 1111398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761777

RESUMEN

MALT1 is a core component of the CARD11-BCL10-MALT1 (CBM) signalosome, in which it acts as a scaffold and a protease to bridge T cell receptor (TCR) ligation to immune activation. As a scaffold, MALT1 binds to TRAF6, and T cell-specific TRAF6 ablation or destruction of MALT1-TRAF6 interaction provokes activation of conventional T (Tconv) effector cells. In contrast, MALT1 protease activity controls the development and suppressive function of regulatory T (Treg) cells in a T cell-intrinsic manner. Thus, complete loss of TRAF6 or selective inactivation of MALT1 catalytic function in mice skews the immune system towards autoimmune inflammation, but distinct mechanisms are responsible for these immune disorders. Here we demonstrate that TRAF6 deletion or MALT1 paracaspase inactivation are highly interdependent in causing the distinct immune pathologies. We crossed mice with T cell-specific TRAF6 ablation (Traf6-ΔT) and mice with a mutation rendering the MALT1 paracaspase dead in T cells (Malt1 PD-T) to yield Traf6-ΔT;Malt1 PD-T double mutant mice. These mice reveal that the autoimmune inflammation caused by TRAF6-ablation relies strictly on the function of the MALT1 protease to drive the activation of Tconv cells. Vice versa, despite the complete loss of Treg cells in Traf6-ΔT;Malt1 PD-T double mutant mice, inactivation of the MALT1 protease is unable to cause autoinflammation, because the Tconv effector cells are not activated in the absence of TRAF6. Consequentially, combined MALT1 paracaspase inactivation and TRAF6 deficiency in T cells mirrors the immunodeficiency seen upon T cell-specific MALT1 ablation.


Asunto(s)
Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Animales , Ratones , Endopeptidasas/metabolismo , Homeostasis , Inflamación , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Péptido Hidrolasas/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
3.
Bio Protoc ; 12(10): e4423, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35813027

RESUMEN

Although CRISPR-Cas9 genome editing can be performed directly in single-cell mouse zygotes, the targeting efficiency for more complex modifications such as the insertion of two loxP sites, multiple mutations in cis, or the precise insertion or deletion of longer DNA sequences often remains low (Cohen, 2016). Thus, targeting and validation of correct genomic modification in murine embryonic stem cells (ESCs) with subsequent injection into early-stage mouse embryos may still be preferable, allowing for large-scale screening in vitro before transfer of thoroughly characterized and genetically defined ESC clones into the germline. This procedure can result in a reduction of animal numbers with cost effectiveness and compliance with the 3R principle of animal welfare regulations. Here, we demonstrate that after transfection of homology templates and PX458 CRISPR-Cas9 plasmids, EGFP-positive ESCs can be sorted with a flow cytometer for the enrichment of CRISPR-Cas9-expressing cells. Cell sorting obviates antibiotic selection and therefore allows for more gentle culture conditions and faster outgrowth of ESC clones, which are then screened by qPCR for correct genomic modifications. qPCR screening is more convenient and less time-consuming compared to analyzing PCR samples on agarose gels. Positive ESC clones are validated by PCR analysis and sequencing and can serve for injection into early-stage mouse embryos for the generation of chimeric mice with germline transmission. Therefore, we describe here a simple and straightforward protocol for CRISPR-Cas9-directed gene targeting in ESCs. Graphical abstract.

4.
JCI Insight ; 7(4)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108221

RESUMEN

The molecular mechanisms that drive the acquisition of distinct neural crest cell (NCC) fates is still poorly understood. Here, we identified Prdm6 as an epigenetic modifier that temporally and spatially regulates the expression of NCC specifiers and determines the fate of a subset of migrating cardiac NCCs (CNCCs). Using transcriptomic analysis and genetic and fate mapping approaches in transgenic mice, we showed that disruption of Prdm6 was associated with impaired CNCC differentiation, delamination, and migration and led to patent ductus arteriosus (DA) and ventricular noncompaction. Bulk and single-cell RNA-Seq analyses of the DA and CNCCs identified Prdm6 as a regulator of a network of CNCC specification genes, including Wnt1, Tfap2b, and Sox9. Loss of Prdm6 in CNCCs diminished its expression in the pre-epithelial-mesenchymal transition (pre-EMT) cluster, resulting in the retention of NCCs in the dorsal neural tube. This defect was associated with diminished H4K20 monomethylation and G1-S progression and augmented Wnt1 transcript levels in pre-EMT and neural tube clusters, which we showed was the major driver of the impaired CNCC migration. Altogether, these findings revealed Prdm6 as a key regulator of CNCC differentiation and migration and identified Prdm6 and its regulated network as potential targets for the treatment of congenital heart diseases.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cresta Neural/patología , Organogénesis/genética , ARN/genética , Proteínas Represoras/genética , Animales , Diferenciación Celular , Movimiento Celular , Modelos Animales de Enfermedad , Femenino , Cardiopatías Congénitas/metabolismo , Ratones , Ratones Noqueados , Cresta Neural/metabolismo , Proteínas Represoras/metabolismo
5.
Sci Immunol ; 6(65): eabh2095, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767456

RESUMEN

Balanced control of T cell signaling is critical for adaptive immunity and protection from autoimmunity. By combining genetically engineered mouse models, biochemical analyses and pharmacological interventions, we describe an unexpected dual role of the tumor necrosis factor receptor­associated factor 6 (TRAF6) E3 ligase as both a positive and negative regulator of mucosa-associated lymphoid tissue 1 (MALT1) paracaspase. Although MALT1-TRAF6 recruitment is indispensable for nuclear factor κB signaling in activated T cells, TRAF6 counteracts basal MALT1 protease activity in resting T cells. In mice, loss of TRAF6-mediated homeostatic suppression of MALT1 protease leads to severe autoimmune inflammation, which is completely reverted by genetic or therapeutic inactivation of MALT1 protease function. Thus, TRAF6 functions as a molecular brake for MALT1 protease in resting T cells and a signaling accelerator for MALT1 scaffolding in activated T cells, revealing that TRAF6 controls T cell activation in a switch-like manner. Our findings have important implications for development and treatment of autoimmune diseases.


Asunto(s)
Homeostasis/inmunología , Inflamación/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Factor 6 Asociado a Receptor de TNF/genética
6.
Methods Mol Biol ; 2366: 125-143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34236636

RESUMEN

Jurkat T cells have been of central importance for the discovery of signalling mediators driving NF-κB activation in response to T cell antigen receptor (TCR)/CD28 co-stimulation. The critical function of the key regulators identified in Jurkat T cells has subsequently been verified in primary murine and human T cells. CRISPR/Cas9-mediated genomic editing techniques in combination with viral reconstitution are powerful tools that now enable the investigation of the exact molecular mechanisms that govern T cell signalling, especially the impact of protein-protein interactions, protein modifications, or cancer-associated gain- or loss-of-function mutations. As exemplified by the CARD11 gene encoding a key regulator of NF-κB signalling in T cells, we describe here the detailed workflow for the generation of CRISPR/Cas9 knockout (KO) Jurkat T cells and the subsequent reconstitution using a lentiviral transduction protocol. In addition, we explain the use of a stable NF-κB-dependent EGFP reporter system that enables a reliable quantification of NF-κB transcriptional activation in the reconstituted KO Jurkat T cells.


Asunto(s)
Leucemia de Células T/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Proteína 10 de la LLC-Linfoma de Células B , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
8.
Front Pharmacol ; 11: 570939, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071784

RESUMEN

BACKGROUND: The anticancer potential of pharmacologic ascorbic acid (AA) has been detected in a number of cancer cells. However, in vivo study suggested a strongly reduced cytotoxic activity of AA. It was known that pH could be a critical influencing factor for multiple anticancer treatments. In this study, we explored the influence of pH on the cytotoxicity of ascorbic acid. We employed castration-resistant prostate cancer (CRPC) cell lines PC3 and DU145 to observe the therapeutic effect of AA on PCa cells that were cultured with different pH in vitro. We also analyzed the influence of pH and extracellular oxidation on cytotoxicity of AA in cancer cells using reactive oxygen species (ROS) assay, cellular uptake of AA, and NADPH assay. Male BALB/c nude mice bearing prostate carcinoma xenografts (PC3 or DU145) were used to assess treatment response to AA with or without bicarbonate in vivo. The cellular uptake of AA in PCa xenografts was detected using positron emission tomography (PET). Small animal PET/CT scans were performed on mice after the administration of 6-deoxy-6-[18F] fluoro-L-ascorbic acid (18F-DFA). RESULTS: Our in vitro studies demonstrate that acidic pH attenuates the cytotoxic activity of pharmacologic ascorbic acid by inhibiting AA uptake in PCa cells. Additionally, we found that the cancer cell-selective toxicity of AA depends on ROS. In vivo, combination of AA and bicarbonate could provide a significant better therapeutic outcome in comparison with controls or AA single treated mice. 18F-DFA PET imaging illustrated that the treatment with NaHCO3 could significantly increase the AA uptake in tumor. CONCLUSIONS: The alkalinity of tumor microenvironment plays an important role in anticancer efficiency of AA in CRPC. 18F-DFA PET/CT imaging could predict the therapeutic response of PCa animal model through illustration of tumoral uptake of AA. 18F-DFA might be a potential PET tracer in clinical diagnosis and treatment for CRPC.

9.
Nat Commun ; 10(1): 2352, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138793

RESUMEN

Regulatory T cells (Tregs) have crucial functions in the inhibition of immune responses. Their development and suppressive functions are controlled by the T cell receptor (TCR), but the TCR signaling mechanisms that mediate these effects remain ill-defined. Here we show that CARD11-BCL10-MALT1 (CBM) signaling mediates TCR-induced NF-κB activation in Tregs and controls the conversion of resting Tregs to effector Tregs under homeostatic conditions. However, in inflammatory milieus, cytokines can bypass the CBM requirement for this differentiation step. By contrast, CBM signaling, in a MALT1 protease-dependent manner, is essential for mediating the suppressive function of Tregs. In malignant melanoma models, acute genetic blockade of BCL10 signaling selectively in Tregs or pharmacological MALT1 inhibition enhances anti-tumor immune responses. Together, our data uncover a segregation of Treg differentiation and suppressive function at the CBM complex level, and provide a rationale to explore MALT1 inhibitors for cancer immunotherapy.


Asunto(s)
Proteína 10 de la LLC-Linfoma de Células B/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Animales , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Diferenciación Celular , Citocinas/inmunología , Melanoma Experimental , Ratones , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo
10.
Gut ; 67(1): 146-156, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27646934

RESUMEN

OBJECTIVE: The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined. DESIGN: We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated KrasG12D-driven pancreatic ductal adenocarcinoma. Quantitative expression data were analysed and extensively modelled in silico. RESULTS: We defined three distinctive phases-termed inflammation, regeneration and refinement-following induction of moderate acute pancreatitis in wild-type mice. These corresponded to different waves of proliferation of mesenchymal, progenitor-like and acinar cells. Pancreas regeneration required a coordinated transition of proliferation between progenitor-like and acinar cells. In mice harbouring an oncogenic Kras mutation and challenged with pancreatitis, there was an extended inflammatory phase and a parallel, continuous proliferation of mesenchymal, progenitor-like and acinar cells. Analysis of high-resolution transcriptional data from wild-type animals revealed that organ regeneration relied on a complex interaction of a gene network that normally governs acinar cell homeostasis, exocrine specification and intercellular signalling. In mice with oncogenic Kras, a specific carcinogenic signature was found, which was preserved in full-blown mouse pancreas cancer. CONCLUSIONS: These data define a transcriptional signature of early pancreatic carcinogenesis and a molecular network driving formation of preneoplastic lesions, which allows for more targeted biomarker development in order to detect cancer earlier in patients with pancreatitis.


Asunto(s)
Carcinogénesis/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Células Acinares/patología , Enfermedad Aguda , Animales , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Proliferación Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células Madre Mesenquimatosas/patología , Ratones Transgénicos , Páncreas/fisiología , Neoplasias Pancreáticas/patología , Pancreatitis/genética , Pancreatitis/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Regeneración/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA