Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Heliyon ; 10(11): e32366, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933971

RESUMEN

Aberrant epigenetic modifications, particularly DNA methylation, play a critical role in the pathogenesis and progression of human diseases. The current review aims to reveal the role of aberrant DNA methylation in the pathogenesis and progression of diseases and to discuss the original data obtained from international research laboratories on this topic. In the review, we mainly summarize the studies exploring the role of aberrant DNA methylation as diagnostic and prognostic biomarkers in a broad range of human diseases, including monogenic epigenetics, autoimmunity, metabolic disorders, hematologic neoplasms, and solid tumors. The last section provides a general overview of the possibility of the DNA methylation machinery from the perspective of pharmaceutic approaches. In conclusion, the study of DNA methylation machinery is a phenomenal intersection that each of its ways can reveal the mysteries of various diseases, introduce new diagnostic and prognostic biomarkers, and propose a new patient-tailored therapeutic approach for diseases.

2.
Expert Rev Anticancer Ther ; 24(7): 493-512, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38690706

RESUMEN

INTRODUCTION: As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED: The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION: The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.


Asunto(s)
Desarrollo de Medicamentos , Linfoma , Linfopoyesis , Fosfatidilinositol 3-Quinasas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Linfoma/patología , Linfoma/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Progresión de la Enfermedad , Terapia Molecular Dirigida , Diseño de Fármacos , Diferenciación Celular
3.
Mol Biol Rep ; 50(5): 4073-4082, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36877344

RESUMEN

BACKGROUND: Anaplastic thyroid cancer (ATC) is an aggressive subtype of thyroid cancer, accounting for 1 to 2% of all cases. Deregulations of cell cycle regulatory genes including cyclins, cyclin-dependent kinases (CDKs), and endogenous inhibitors of CDKs (CKIs) are hallmarks of cancer cells and hence, studies indicate the inhibition of CDK4/6 kinases and cell cycle progression as potent therapeutic strategies. In this study, we investigated the anti-tumor activity of Abemaciclib, a CDK4 and CDK6 inhibitor, in ATC cell lines. METHODS AND RESULTS: The ATC cell lines C643 and SW1736 were selected to study the antiproliferative effects of Abemaciclib using a cell proliferation assay and crystal violet staining assay. Annexin V/PI staining and cell cycle analysis by flow cytometry were also performed to examine the effects on apoptosis induction and cell cycle arrest. Wound healing assay and zymography analysis examined the effects of the drug on invasive abilities of ATC cells and Western blot analyses were applied to further study the anti-tumor mechanism of Abemaciclib, in addition to combination treatment with alpelisib. Our data demonstrated that Abemaciclib significantly inhibited cell proliferation and increased cellular apoptosis and cell cycle arrest in ATC cell lines, while considerably reducing cell migration and colony formation. The mechanism seemed to involve the PI3K pathway. CONCLUSION: Our preclinical data highlight CDK4/6 as interesting therapeutic targets in ATC and suggest CDK4/6-blockade therapies as promising strategies in this malignancy.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/genética , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Neoplasias de la Tiroides/genética , Ciclo Celular , Apoptosis , Proliferación Celular
4.
Cell J ; 25(2): 85-91, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36840454

RESUMEN

OBJECTIVE: Minimal residual disease (MRD) is considered the greatest prognostic factor in acute lymphoblastic leukemia (ALL). MRD is a valuable tool for anticipating impending relapse and treatment response assessment. The objective of the present study was to investigate whether the detection of IgH gene rearrangement using polymerase chain reaction (PCR)-based GeneScan analysis could be a complementary method to monitor MRD along with the quantitative realtime PCR (qPCR). MATERIALS AND METHODS: In this cross-sectional study, we valued the MRD levels, based on the GeneScanning analysis (GSA), and then compared the data with quantitative real-time polymerase chain reaction at different time points in peripheral blood (PB) samples of adult B-lineage ALL patients (n=35). The specific polymerase chain reaction (PCR) primers for IGH gene FR-1 and fluorescence-labeled J-primer were used and analyzed by capillary gel electrophoresis on a sequencer. The results of this study were compared with the previously reported MRD results obtained by the IGH rearrangements allele-specific oligonucleotide (ASO) -qPCR methods. RESULTS: The total concordance rate was 86.7%, with a P<0.001. MRD results obtained by GSA and ASO-qPCR methods were concordant in all diagnostic samples and samples on the 14th and 28th days of induction therapy. The results of these 2.5 years' follow-ups demonstrated a significant correlation between the two techniques (r=0.892, P<0.001). CONCLUSION: It seems that the PCR-based GeneScan analysis of IGH gene rearrangement detection may be a valuable molecular technique to distinguish monoclonality from polyclonality. And also, it may be a precise tool to detect the residual leukemic DNA in the PB follow-up samples of patients.

5.
Anticancer Agents Med Chem ; 23(7): 794-806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36284375

RESUMEN

BACKGROUND: As epigenetic readers, Bromodomain and extraterminal domain (BET) proteins have attracted immense interest in developing novel therapies targeting this family to inhibit cancer progression. Although the impact of BRD4 in the carcinogenesis of various tumors has been widely investigated, little is known about the potential roles of the BET family in gastric cancer. METHODS: In this cohort study, we have screened the expression profile of the BET protein family, including three members, BRD2, BRD3 and BRD4, in fresh gastric cancer (GC), adjacent non-tumor and normal gastric tissues, as well as the anti-cancer effects and molecular mechanisms of BET inhibition in GC cell lines. RESULTS: Among GC patients, BRD2, BRD3 and BRD4 showed overexpression, 48.07% (25/52), 61.5% (32/52) and 63.46% (33/52), respectively. The overexpression of BRD3 and BRD4 were remarkably associated with unfavorable outcomes (HR = 2.023, P = 0.038; HR = 3.874, P = 0.001, respectively). However, multivariate Cox regression analysis indicated that BRDs mRNA expression could not be used as an independent prognostic factor for GC patients after adjustment with other variables. I-BET151, a potent pan-inhibitor, suppressing the BET family, decreased cell growth, migration and invasion of GC cells. Interestingly, I-BET151 induced G1 cell cycle arrest through down-regulation of c-Myc and its target, CDK2/Cyclin D1 complex. CONCLUSIONS: Our data provide insights into the prognostic role of the BET family in GC and proposed BET inhibition as a therapeutic strategy for GC patients.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Gástricas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Factores de Transcripción/metabolismo , Pronóstico , Estudios de Cohortes
6.
Cells ; 11(21)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36359835

RESUMEN

DNA methylation is critical for the normal development and functioning of the human brain, such as the proliferation and differentiation of neural stem cells, synaptic plasticity, neuronal reparation, learning, and memory. Despite the physical stability of DNA and methylated DNA compared to other epigenetic modifications, some DNA methylation-based biomarkers have translated into clinical practice. Increasing reports indicate a strong association between DNA methylation profiles and various clinical outcomes in neurological diseases, making DNA methylation profiles valuable as novel clinical markers. In this review, we aim to discuss the latest evidence concerning DNA methylation alterations in the development of neurodegenerative, neurodevelopmental, and neuropsychiatric diseases. We also highlighted the relationship of DNA methylation alterations with the disease progression and outcome in many neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and autism.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Metilación de ADN/genética , Enfermedades Neurodegenerativas/genética , Epigénesis Genética , ADN/metabolismo , Enfermedad de Alzheimer/genética
7.
Cell Biochem Funct ; 40(8): 800-825, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36111699

RESUMEN

Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Biología Computacional/métodos
8.
Asian Pac J Cancer Prev ; 23(9): 3083-3092, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36172671

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have gained much more attention in cell therapy and regenerative medicine due to their immunosuppressive effects. MSCs have interaction with other immune cells, such as macrophages (MQs). Bone marrow (BM)-derived MSCs can educate MQs toward MSC-educated MQs (MEMs) which possess an anti-inflammatory immunophenotype. Given this and based on the important limitations of BM collection, we hypothesized whether co-culture of MQs with umbilical cord (UC)-derived MSCs can result in the MEM phenotype. METHODS: First, isolated monocytes cultured for five days to obtain M0 MQs. Then, they were co-cultured with either BM- or UC-MSCs under direct and indirect conditions. After three days of co-culture, MEM-specific surface markers, as well as the gene expression of inflammatory and anti-inflammatory cytokines, were evaluated. RESULTS: Surface expression of CD163/CD206, as specific markers for M2 MQs, increased in MEMs after co-culture with BM- and UC-derived MSCs, while CD80/CD86 expression (specific markers for M1 MQs) didn't change significantly. The mRNA expressions of PDL-1 as well as anti-inflammatory cytokines, including IL-6, IL-10, and TGFß also increased in MEMs after co-culture of UC-MSCs compared to control MQs (p <.05), while the expression of IL-12 was significantly decreased (p<.001). CONCLUSIONS: To the best of our knowledge, this study shows for the first time that the co-culture of MQs with UC-derived MSCs efficiently contributes to the generation of MEMs even greater than BM-MSCs; shedding light on the promising potential of UC as an alternative source to educate MQs in vitro.


Asunto(s)
Interleucina-10 , Células Madre Mesenquimatosas , Antiinflamatorios/metabolismo , Médula Ósea , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Cultivadas , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Macrófagos , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cordón Umbilical/metabolismo
9.
J Cancer Res Clin Oncol ; 148(1): 57-70, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34981193

RESUMEN

PURPOSE: Therapy resistance is the principal obstacle to achieving cures in cancer patients and its successful tackling requires a deep understanding of the resistance mediators. Increasing evidence indicates that tumor phosphatases are novel and druggable targets in translational oncology and their modulation may hinder tumor growth and motility and potentiate therapeutic sensitivity in various neoplasms via regulation of various signal transduction pathways. Dual-specificity phosphatases (DUSPs) are key players of cell growth, survival and death and have essential roles in tumor initiation, malignant progression and therapy resistance through regulation of the MAPK signaling pathway. In this review, different aspects of DUSPs are discussed. METHODS: A comprehensive literature review was performed using various websites including PubMed. RESULTS: We provide mechanistic insights into the roles of well-known DUSPs in resistance to a wide range of cancer therapeutic approaches including chemotherapy, radiation and molecular targeted therapy in human malignancies. Moreover, we discuss the development of DUSP modulators, with a focus on DUSP1 and 6 inhibitors. Ultimately, the preclinical investigations of small molecule inhibitors of DUSP1 and 6 are outlined. CONCLUSION: Emerging evidence indicates that the DUSP family is aberrantly expressed in human malignancies and plays critical roles in determining sensitivity to a wide range of cancer therapeutic strategies through regulation of the MAPK signaling pathways. Consequently, targeting DUSPs and their downstream molecules can pave the way for more effective cancer therapies.


Asunto(s)
Antineoplásicos/farmacología , Fosfatasa 1 de Especificidad Dual/antagonistas & inhibidores , Fosfatasa 6 de Especificidad Dual/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Benzofuranos/farmacología , Carcinogénesis/patología , Resistencia a Antineoplásicos/genética , Fosfatasa 1 de Especificidad Dual/biosíntesis , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/biosíntesis , Fosfatasa 6 de Especificidad Dual/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Imidazoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Int Immunopharmacol ; 103: 108499, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34972068

RESUMEN

Immunotherapy has been developing at an unprecedented speed with promising therapeutic outcomes in the wide spectrum of cancers. Up until now, most immunotherapies have focused on adaptive immunity; however, investigating the potential of macrophage phagocytosis and consequent adaptive immune cross-priming has led to a growing interest in exploiting macrophages in cancer therapy. In light of the positive evidence from preclinical studies and early clinical data, targeting macrophage phagocytosis has become a promising therapeutic strategy. Here, we review therapies based on harnessing and amplifying macrophage phagocytosis, such as blocking phagocytosis checkpoints and exploiting nanoparticles as efficient approaches in elevating macrophages-mediated phagocytosis. The present study introduces CAR-macrophage as the state-of-the-art modality serving as the bridge between the innate and adaptive immune system to mount a superior anti-tumor response in the treatment of cancer. We also take a look at the recent reports of therapies based on CAR-engineered macrophages with the hope of providing a future research direction for expanding the application of CAR-macrophage therapy.


Asunto(s)
Nanomedicina , Neoplasias , Citofagocitosis , Humanos , Inmunoterapia , Macrófagos , Fagocitosis
11.
J Cell Physiol ; 237(1): 346-372, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34498289

RESUMEN

Despite remarkable advances in different types of cancer therapies, an effective therapeutic strategy is still a major and significant challenge. One of the most promising approaches in this regard is immunotherapy, which takes advantage of the patients' immune system; however, the many mechanisms that cancerous cells harbor to extend their survival make it impossible to gain perfect eradication of tumors. The response rate to cancer immunotherapies, especially checkpoint inhibitors and adoptive T cell therapy, substantially differs in various cancer types with the highest rates in advanced melanoma and non-small cell lung cancer. Indeed, the lack of response in many tumors indicates primary resistance that can originate from either tumor cells (intrinsic) or tumor microenvironment (extrinsic). On the other hand, some tumors show an initial response to immunotherapy followed by relapse in few months (acquired resistance). Understanding the underlying molecular mechanisms of immunotherapy resistance makes it possible to develop effective strategies to overcome this hurdle and boost therapy outcomes. In this review, we take a look at immunotherapy strategies and go through a number of primary and acquired resistance mechanisms. Also, we present various ongoing methods to overcoming resistance and introduce some promising fields to improve the outcome of immunotherapy in patients affected with cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias , Humanos , Inmunoterapia , Recurrencia Local de Neoplasia , Neoplasias/patología , Microambiente Tumoral
12.
Int Immunopharmacol ; 101(Pt B): 108260, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678690

RESUMEN

The application of the CAR T cell therapy in hematologic malignancies holds prosperous results that intensified the unprecedented enthusiasm to employ this fascinating strategy in other types of human malignancies. Although the researchers invested a great deal of effort to exploit the utmost efficacy of these cells in the context of solid tumors, few articles reviewed obstacles and opportunities. The current review aims to provide comprehensive literature of recent advances of CAR T cell therapy in a wide range of solid tumors; and also, to discuss the original data obtained from international research laboratories on this topic. Despite promising results, several radical obstacles are on the way of this approach. This review discusses the most important drawbacks and also responds to questions on how the intrinsic features of solid tumors in addition to the tumor microenvironment-related challenges and the immune-relating adverse effects can curb satisfactory outcomes of CAR T cells. The last section allocates a special focus on innovative and contemporary policies which have already been adopted to surmount these challenges. Finally, we comment on the future research aspects in which the efficacy, as well as the safety of CAR T cell therapy, might be improved.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Animales , Humanos , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/genética , Microambiente Tumoral
13.
Mol Biol Rep ; 48(12): 8045-8059, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34689281

RESUMEN

Along with evolution, a considerable number of signaling cascades have evolved within cells to meet their multifaceted needs. Among transmitting molecules, phosphoinositide 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) have teamed up to build a signaling axis that effectively regulates various cellular processes including cell proliferation and migration. Given the extensive output of the PI3K/Akt/mTOR signaling axis, its aberrancy could subsequently lead to the formation of a wide range of human cancers spanning from hematologic malignancies to different types of solid tumors. Despite the high frequency of the PI3K pathway over-activation in most malignancies, mutations in the DNA sequence are not equally common. Such incompatibility sheds light on the possible effects of post-translational modification mechanisms that may take control of this pathway, some of the most important ones of which are through microRNAs (miRNAs or miRs). The present review is designed to take off the veil from the regulatory role of these small non-coding RNAs on the PI3K/Akt/mTOR signaling axis in carcinogenesis.


Asunto(s)
MicroARNs/genética , Neoplasias/genética , Transducción de Señal/fisiología , Carcinogénesis/genética , Carcinogénesis/patología , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , MicroARNs/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
14.
Life Sci ; 287: 120100, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715143

RESUMEN

AIMS: Glioblastoma (GB) is the most aggressive type of brain tumor. Rapid progression, active angiogenesis, and therapy resistance are major reasons for its high mortality. Elevated expression of members of the vascular endothelial growth factor (VEGF) family suggests that anti-VEGF therapies may be potent anti-glioma therapeutic approaches. Here, we evaluated the anti-tumor activity of cediranib, a pan inhibitor of the VEGF receptors, on GB cells. MATERIALS AND METHODS: Anti-proliferative effects of cediranib were determined using MTT, crystal-violet staining, clonogenic and anoikis resistance assays. Apoptosis induction was assessed by Annexin V/PI staining and Western blot analysis and aggressive abilities of GB cells were investigated using cell migration/invasion assays and zymography. Small-interfering RNA (siRNA)-mediated Knockdown was used to study resistance mechanisms. The anti-proliferative and apoptotic effects of cediranib in combination with radiotherapy, temozolomide, bevacizumab were also evaluated using MTT, Annexin V/PI staining and Western blot analysis for cleaved PARP-1. KEY FINDINGS: Cediranib reduced GB cell proliferation, induced apoptotic cell death and inhibited the aggressive abilities of GB cells. Cediranib synergistically increased the anti-proliferative and apoptotic effects of radiotherapy and bevacizumab and augmented the sensitivity of GB cells to temozolomide chemotherapy. In addition, knockdown of MET and AKT potentiated cediranib sensitivity in cediranib-resistant GB cells. SIGNIFICANCE: These findings suggest that cediranib, alone or in combination with other therapeutics, is a promising strategy for the treatment of GB and provide a rationale for further investigation of the therapeutic potential of cediranib for the treatment of this fatal malignancy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Proliferación Celular/efectos de los fármacos , Glioblastoma/metabolismo , Quinazolinas/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/fisiología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Inhibidores de Crecimiento/farmacología , Inhibidores de Crecimiento/uso terapéutico , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/uso terapéutico , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
15.
Mol Genet Genomic Med ; 9(11): e1818, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34549887

RESUMEN

BACKGROUND: In the new era of tailored cancer treatment strategies, finding a molecule to regulate a wide range of intracellular functions is valuable. The unique property of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ; PPARG) in transmitting the anti-survival signals of the chemotherapeutic drugs has fired the enthusiasm into the application of this receptor in cancer treatment. OBJECTIVES: We aimed to investigate the expression of PPARγ and one of its downstream targets PTEN in non-M3 acute myeloid leukemia (AML) patients. We also investigated the therapeutic value of PPARγ stimulation using pioglitazone in the AML-derived U937 cell line. METHODS: The blood samples from 30 patients diagnosed with non-M3 AML as well as 10 healthy individuals were collected and the mRNA expression levels of PPARγ and PTEN were evaluated. Additionally, we used trypan blue assay, MTT assay, and flow cytometry analysis to evaluate the anti-leukemic effects of pioglitazone on U937 cells. RESULTS: While PTEN was significantly downregulated in AML patients as compared to the control group, the expression of PPARγ was increased in the patients' group. The expression level of PPARγ was also negatively correlated with PTEN; however, it was not statistically significant. Besides, PPARγ stimulation using pioglitazone reduced survival and proliferative capacity of U937 cells through inducing apoptosis and suppression of cell transition from the G1 phase of the cell cycle. CONCLUSION: The results of the present study shed more light on the importance of PPARγ and its stimulation in the therapeutic strategies of AML.


Asunto(s)
Leucemia Mieloide Aguda , PPAR gamma , Proteínas Portadoras , Expresión Génica , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , PPAR gamma/genética , Fosfohidrolasa PTEN/genética , Pioglitazona/farmacología , Células U937
16.
Eur J Pharmacol ; 909: 174404, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34363829

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with the highest mortality rate and a poor 5-year survival rate. The majority of the cases are diagnosed in advanced stages when the disease has spread, which makes the tumor inoperable. Due to the antigenic essence of lung tumor cells, immunotherapy is a novel area and has exhibited remarkable results in this malignancy. Immune checkpoint inhibitors are inhibitory molecules that disrupt immune checkpoint signaling pathways whether in the immune cells or tumor cells. Tremelimumab and ipilimumab (CTLA-4 blockers), pembrolizumab and nivolumab (PD-1 blockers), and durvalumab, avelumab, and atezolizumab (PD-L1 blockers) are FDA-approved and improve the survival and objective response of NSCLC patients. Despite this, over-stimulation of the immune system via the immune checkpoint therapy is a double-edged sword that causes a spectrum of adverse events from moderate to life-threatening. Nanomedicine considerably impacts the way of diagnosis and treatment of tumors to overcome treatment-related challenges. Accordingly, nanoparticle-based immune checkpoint inhibitor therapy increases the local concentration of immune checkpoint inhibitors while reduces the side effects, which result in boosting the anti-tumor immunity against various types of malignancies, including NSCLC. The current review provides comprehensive information about immune checkpoint therapy in NSCLC, their efficacy, and their safety profile. Besides, recent advances in nanoparticle-based immune checkpoint therapy and its limitation are discussed.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia/tendencias , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacocinética , Antígeno B7-H1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacocinética , Inmunoterapia/métodos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Supervivencia sin Progresión , Distribución Tisular
17.
Med Oncol ; 38(9): 102, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34313836

RESUMEN

Acute myeloid leukemia (AML) is one of the major hematological malignancies. Advances in molecular research have greatly improved our understanding of the process of leukemia formation in AML. Osteopontin (OPN) is a novel molecule that mediates critical processes for cancer progression. The aim of this study was to investigate the relative expression of OPN gene isoforms in AML patients on days 0, 14, and 28 after chemotherapy. The bone marrow samples were collected from 40 newly diagnosed AML patients (24 male and 16 female with a mean age of 30 years) at the initial time of diagnosis, 14 and 28 days after treatment. The peripheral blood samples of 10 healthy individuals were also collected as the control group. The expression of OPN isoforms was investigated by Real-Time Quantitative PCR. The expression of VEGFc/STAT3/CXCR4 was also investigated by Real-Time PCR. Findings indicated that OPNb and OPNc isoforms had significantly overexpression in AML patients on 14 and 28 days after treatment compared to normal samples (P < 0.05). The level of OPNb and OPNc isoforms was increased significantly in M0, M1, and M2 subgroups with overexpression of VEGFc/STAT3/CXCR4, 28 days after starting chemotherapy (P < 0.05). Our results suggested that OPNb and OPNc isoforms play a major role in cancer relapse. Therefore, they can be used as a valuable prognostic and diagnostic biomarker for relapse of the AML disease. However, these findings need confirmation with further studies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/metabolismo , Leucemia Mieloide Aguda/patología , Osteopontina/metabolismo , Adulto , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Persona de Mediana Edad , Osteopontina/genética , Pronóstico , Isoformas de Proteínas , Adulto Joven
18.
Eur J Pharmacol ; 908: 174345, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34270986

RESUMEN

Ovarian cancer, characterized by rapid growth and asymptomatic development in the early stage, is the fifth common cancer in women. The deregulated expression of c-Myc in more than 50% of human tumors including ovarian cancer makes this oncogenic master transcription factor a potential therapeutic target for cancer treatment. In the present study, we evaluated the anti-tumor effects of 10058-F4, a small molecule c-Myc inhibitor, on ovarian cancer cells. We found that 10058-F4 not only inhibited the proliferation and clonal growth of ovarian cancer cells but also enhanced the cytotoxic effects of chemotherapeutic drugs. Our results also revealed that c-Myc inhibition using 10058-F4 increased the intracellular reactive oxygen species production coupled with suppressed expression of hTERT. RT-qPCR analysis indicated that 10058-F4 enhanced the mRNA levels of the forkhead box O (FOXO) family of transcription factors, including FOXO1, 3, and 4. Moreover, 10058-F4 induced G1 cell cycle arrest in 2008C13 ovarian cancer cells, along with increased expression of some key targets of FOXOs involved in the regulation of cell cycle such as p15, p21, p27, and GADD45A. The results of our study also showed that the 10058-F4-induced apoptosis in 2008C13 cell line was associated with the upregulation of FOXO downstream genes, including PUMA, Bim, and FasL. In conclusion, our results, for the first time, suggest that the anti-tumor effects of 10058-F4 in ovarian cancer cells might be mediated through upregulation of FOXO transcription factors and their key target genes involved in G1 cell cycle arrest, apoptosis, and autophagic cell death.


Asunto(s)
Neoplasias Ováricas , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos
19.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119087, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34182011

RESUMEN

Due to its potent anti-tumor activity, well-investigated pharmacokinetic properties and safety profile, disulfiram (DSF) has emerged as a promising candidate for drug repurposing in cancer therapy. Although several molecular mechanisms have been proposed for its anti-cancer effects, the precise underlying mechanisms remain unclear. In the present study, we showed that DSF inhibited proliferation of cancer cells by inducing reactive oxygen species (ROS) production, a G1 cell cycle arrest and autophagy. Moreover, DSF triggered apoptosis via suppression of the anti-apoptotic protein survivin. To elucidate the mechanisms for the anti-proliferative activities of DSF, we applied a 2-DE combined with MALDI-TOF-MS/MS analysis to identify differentially expressed proteins in breast cancer cells upon treatment with DSF. Nine differentially expressed proteins were identified among which, three candidates including calmodulin (CaM), peroxiredoxin 1 (PRDX1) and collagen type I alpha 1 (COL1A1) are involved in the regulation of the AKT signaling pathway. The results of western blot analysis confirmed that DSF inhibited p-AKT, suggesting that DSF induces its anti-tumor effects via AKT blockade. Moreover, we found that DSF increased the mRNA levels of FOXO1, FOXO3 and FOXO4, and upregulated the expression of their target genes involved in G1 cell cycle arrest, apoptosis and autophagy. Finally, DSF potentiated the anti-proliferative effects of well-known chemotherapeutic agents such as arsenic trioxide (ATO), doxorubicin, paclitaxel and cisplatin. Altogether, these findings provide mechanistic insights into the anti-growth activities of DSF.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Disulfiram/farmacología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Cadena alfa 1 del Colágeno Tipo I , Ensayos de Selección de Medicamentos Antitumorales , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Factores de Transcripción Forkhead/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Tumorales Cultivadas
20.
Int Immunopharmacol ; 97: 107694, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33932694

RESUMEN

In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan city, Hubei province, China. Rapidly escalated into a worldwide pandemic, it has caused an unprecedented and devastating situation on the global public health and society economy. The severity of recent coronavirus disease, abbreviated to COVID-19, seems to be mostly associated with the patients' immune response. In this vein, mesenchymal stromal/stem cells (MSCs) have been suggested as a worth-considering option against COVID-19 as their therapeutic properties are mainly displayed in immunomodulation and anti-inflammatory effects. Indeed, administration of MSCs can attenuate cytokine storm and enhance alveolar fluid clearance, endothelial recovery, and anti-fibrotic regeneration. Despite advantages attributed to MSCs application in lung injuries, there are still several issues __foremost probability of malignant transformation and incidence of MSCs-related coagulopathy__ which should be resolved for the successful application of MSC therapy in COVID-19. In the present study, we review the historical evidence of successful use of MSCs and MSC-derived extracellular vesicles (EVs) in the treatment of acute respiratory distress syndrome (ARDS). We also take a look at MSCs mechanisms of action in the treatment of viral infections, and then through studying both the dark and bright sides of this approach, we provide a thorough discussion if MSC therapy might be a promising therapeutic approach in COVID-19 patients.


Asunto(s)
COVID-19/terapia , Vesículas Extracelulares/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Síndrome de Dificultad Respiratoria/terapia , Antiinflamatorios/inmunología , Antiinflamatorios/uso terapéutico , COVID-19/complicaciones , Humanos , Síndrome de Dificultad Respiratoria/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...