Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Clin Cancer Res ; 29(17): 3541-3553, 2023 09 01.
Article En | MEDLINE | ID: mdl-37279093

PURPOSE: Histone deacetylase (HDAC) inhibition has been shown to induce pharmacologic "BRCAness" in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and PARP inhibition in cancer types that are insensitive to single-agent PARP inhibitors (PARPi). Here, we report the concept and characterization of a novel bifunctional PARPi (kt-3283) with dual activity toward PARP1/2 and HDAC enzymes in Ewing sarcoma cells. EXPERIMENTAL DESIGN: Inhibition of PARP1/2 and HDAC was measured using PARP1/2, HDAC activity, and PAR formation assays. Cytotoxicity was assessed by IncuCyte live cell imaging, CellTiter-Glo, and spheroid assays. Cell-cycle profiles were determined using propidium iodide staining and flow cytometry. DNA damage was examined by γH2AX expression and comet assay. Inhibition of metastatic potential by kt-3283 was evaluated via ex vivo pulmonary metastasis assay (PuMA). RESULTS: Compared with FDA-approved PARP (olaparib) and HDAC (vorinostat) inhibitors, kt-3283 displayed enhanced cytotoxicity in Ewing sarcoma models. The kt-3283-induced cytotoxicity was associated with strong S and G2-M cell-cycle arrest in nanomolar concentration range and elevated DNA damage as assessed by γH2AX tracking and comet assays. In three-dimensional spheroid models of Ewing sarcoma, kt-3283 showed efficacy in lower concentrations than olaparib and vorinostat, and kt-3283 inhibited colonization of Ewing sarcoma cells in the ex vivo PuMA model. CONCLUSIONS: Our data demonstrate the preclinical justification for studying the benefit of dual PARP and HDAC inhibition in the treatment of Ewing sarcoma in a clinical trial and provides proof-of-concept for a bifunctional single-molecule therapeutic strategy.


Puma , Sarcoma, Ewing , Animals , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Sarcoma, Ewing/pathology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Vorinostat/therapeutic use
2.
Sci Rep ; 12(1): 3075, 2022 02 23.
Article En | MEDLINE | ID: mdl-35197518

Proteoglycans are proteins that are modified with glycosaminoglycan chains. Chondroitin sulfate proteoglycans (CSPGs) are currently being exploited as targets for drug-delivery in various cancer indications, however basic knowledge on how CSPGs are internalized in tumor cells is lacking. In this study we took advantage of a recombinant CSPG-binding lectin VAR2CSA (rVAR2) to track internalization and cell fate of CSPGs in tumor cells. We found that rVAR2 is internalized into cancer cells via multiple internalization mechanisms after initial docking on cell surface CSPGs. Regardless of the internalization pathway used, CSPG-bound rVAR2 was trafficked to the early endosomes in an energy-dependent manner but not further transported to the lysosomal compartment. Instead, internalized CSPG-bound rVAR2 proteins were secreted with exosomes to the extracellular environment in a strictly chondroitin sulfate-dependent manner. In summary, our work describes the cell fate of rVAR2 proteins in tumor cells after initial binding to CSPGs, which can be further used to inform development of rVAR2-drug conjugates and other therapeutics targeting CSPGs.


Chondroitin Sulfate Proteoglycans/metabolism , Lectins/metabolism , Neoplasms/metabolism , Protein Transport , Cell Line, Tumor , Cell Membrane/metabolism , Endosomes/metabolism , Exosomes/metabolism , Humans , Protein Binding , Recombinant Proteins/metabolism
3.
J Med Chem ; 64(20): 14968-14982, 2021 10 28.
Article En | MEDLINE | ID: mdl-34661404

Prostate cancer (PCa) patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer (CRPC). Targeting the androgen receptor (AR) Binding Function-3 (BF3) site offers a promising option to treat CRPC. However, BF3 inhibitors have been limited by poor potency or inadequate metabolic stability. Through extensive medicinal chemistry, molecular modeling, and biochemistry, we identified 2-(5,6,7-trifluoro-1H-Indol-3-yl)-quinoline-5-carboxamide (VPC-13789), a potent AR BF3 antagonist with markedly improved pharmacokinetic properties. We demonstrate that VPC-13789 suppresses AR-mediated transcription, chromatin binding, and recruitment of coregulatory proteins. This novel AR antagonist selectively reduces the growth of both androgen-dependent and enzalutamide-resistant PCa cell lines. Having demonstrated in vitro efficacy, we developed an orally bioavailable prodrug that reduced PSA production and tumor volume in animal models of CRPC with no observed toxicity. VPC-13789 is a potent, selective, and orally bioavailable antiandrogen with a distinct mode of action that has a potential as novel CRPC therapeutics.


Androgen Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Drug Development , Prostatic Neoplasms, Castration-Resistant/drug therapy , Quinolines/pharmacology , Receptors, Androgen/metabolism , Administration, Oral , Androgen Antagonists/administration & dosage , Androgen Antagonists/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Models, Molecular , Molecular Structure , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Quinolines/administration & dosage , Quinolines/chemistry , Structure-Activity Relationship
4.
Molecules ; 24(4)2019 Feb 20.
Article En | MEDLINE | ID: mdl-30791548

The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a versatile RNA-binding protein playing a critical role in alternative pre-mRNA splicing regulation in cancer. Emerging data have implicated hnRNP A1 as a central player in a splicing regulatory circuit involving its direct transcriptional control by c-Myc oncoprotein and the production of the constitutively active ligand-independent alternative splice variant of androgen receptor, AR-V7, which promotes castration-resistant prostate cancer (CRPC). As there is an urgent need for effective CRPC drugs, targeting hnRNP A1 could, therefore, serve a dual purpose of preventing AR-V7 generation as well as reducing c-Myc transcriptional output. Herein, we report compound VPC-80051 as the first small molecule inhibitor of hnRNP A1 splicing activity discovered to date by using a computer-aided drug discovery approach. The inhibitor was developed to target the RNA-binding domain (RBD) of hnRNP A1. Further experimental evaluation demonstrated that VPC-80051 interacts directly with hnRNP A1 RBD and reduces AR-V7 messenger levels in 22Rv1 CRPC cell line. This study lays the groundwork for future structure-based development of more potent and selective small molecule inhibitors of hnRNP A1⁻RNA interactions aimed at altering the production of cancer-specific alternative splice isoforms.


Computational Biology , Drug Discovery , Gene Expression Regulation, Neoplastic/drug effects , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , RNA Splicing/drug effects , Binding Sites , Cell Line, Tumor , Computational Biology/methods , Computer Simulation , Drug Discovery/methods , Heterogeneous Nuclear Ribonucleoprotein A1/chemistry , Humans , Male , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
5.
Eur J Med Chem ; 160: 108-119, 2018 Dec 05.
Article En | MEDLINE | ID: mdl-30326371

While Myc is an essential regulator of growth in normal cells, it is also frequently associated with cancer progression, therapy-resistance and lethal outcomes in most human cancers. In prostate cancer (PCa), Myc transcription factors are implicated in the pathogenesis and progression of the full spectrum of PCa, from adenocarcinoma to advanced castration-resistant and neuroendocrine phenotypes. Though a high-value therapeutic target, clinically approved anti-Myc drugs have yet to be discovered. To elicit its oncogenic effects, Myc must form a heterodimer with its partner Max, which together bind DNA and activate transcription of a spectrum of target genes that promote cell growth, proliferation, metabolism, and apoptosis while blocking differentiation. In this study, we identified a binding site on the DNA-binding domain of the structurally ordered Myc-Max complex and employed a computer-aided rational drug discovery approach to identify small molecules that effectively inhibit Myc-Max functionality. A large-scale virtual screening protocol implementing structure-based methodologies was utilized to select a set of top-ranked compounds that were subsequently evaluated experimentally and characterized mechanistically for their ability to inhibit Myc-Max transcriptional activity and subsequent downstream functions, to reduce viability in PCa cell lines, disrupt protein-DNA interactions and to induce apoptosis as their mechanism of action. Among compounds identified that effectively inhibit Myc-Max activity with low to mid-micromolar range potency and no or minimal generic cytotoxicity, VPC-70067, a close analog of the previously identified Myc inhibitor 10058-F4, served as proof-of-concept that our in silico drug discovery strategy performed as expected. Compound VPC-70063, of a chemically different scaffold, was the best performer in a panel of in vitro assays, and the forerunner for future hit-to-lead optimization efforts. These findings lay a foundation for developing more potent, specific and clinically optimized Myc-Max inhibitors that may serve as promising therapeutics, alone or in combination with current anti-cancer treatments, for treatment of specific phenotypes or heterogeneous tumors.


Antineoplastic Agents/pharmacology , Computer-Aided Design , Drug Discovery , Prostatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Molecular Structure , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/isolation & purification , Proto-Oncogene Proteins c-myc/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
6.
Oncotarget ; 8(26): 42438-42454, 2017 Jun 27.
Article En | MEDLINE | ID: mdl-28465491

Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery , ETS Motif , Prostatic Neoplasms/metabolism , Protein Interaction Domains and Motifs , Transcriptional Regulator ERG/chemistry , Transcriptional Regulator ERG/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Drug Discovery/methods , Gene Expression Regulation, Neoplastic , Humans , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Molecular Conformation , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Protein Binding , Structure-Activity Relationship , Transcriptional Regulator ERG/genetics , Zebrafish
7.
Int J Cancer ; 130(12): 2835-44, 2012 Jun 15.
Article En | MEDLINE | ID: mdl-21780103

The androgen receptor (AR) plays a central role in prostate cancer progression to the castration-resistant (CR) lethal state. L-Dopa decarboxylase (DDC) is an AR coactivator that increases in expression with disease progression and is coexpressed with the receptor in prostate adenocarcinoma cells, where it may enhance AR activity. Here, we hypothesize that the DDC enzymatic inhibitor, carbidopa, can suppress DDC-coactivation of AR and retard prostate tumor growth. Treating LNCaP prostate cancer cells with carbidopa in transcriptional assays suppressed the enhanced AR transactivation seen with DDC overexpression and decreased prostate-specific antigen (PSA) mRNA levels. Carbidopa dose-dependently inhibited cell growth and decreased survival in LNCaP cell proliferation and apoptosis assays. The inhibitory effect of carbidopa on DDC-coactivation of AR and cell growth/survival was also observed in PC3 prostate cancer cells (stably expressing AR). In vivo studies demonstrated that serum PSA velocity and tumor growth rates elevated ∼2-fold in LNCaP xenografts, inducibly overexpressing DDC, were reverted to control levels with carbidopa administration. In castrated mice, treating LNCaP tumors, expressing endogenous DDC, with carbidopa delayed progression to the CR state from 6 to 10 weeks, while serum PSA and tumor growth decreased 4.3-fold and 5.4-fold, respectively. Our study is a first time demonstration that carbidopa can abrogate DDC-coactivation of AR in prostate cancer cells and tumors, decrease serum PSA, reduce tumor growth and delay CR progression. Since carbidopa is clinically approved, it may be readily used as a novel therapeutic strategy to suppress aberrant AR activity and delay prostate cancer progression.


Carbidopa/pharmacology , Dopa Decarboxylase/metabolism , Prostatic Neoplasms/physiopathology , Receptors, Androgen/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Gene Expression Regulation, Neoplastic , Male , Mice , Orchiectomy , Prostate-Specific Antigen/biosynthesis , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , RNA, Messenger/biosynthesis , Xenograft Model Antitumor Assays
8.
PLoS One ; 3(10): e3597, 2008.
Article En | MEDLINE | ID: mdl-18974847

BACKGROUND: Autocrine motility factor/phosphoglucose isomerase (AMF/PGI) is the extracellular ligand for the gp78/AMFR receptor overexpressed in a variety of human cancers. We showed previously that raft-dependent internalization of AMF/PGI is elevated in metastatic MDA-435 cells, but not metastatic, caveolin-1-expressing MDA-231 cells, relative to non-metastatic MCF7 and dysplastic MCF10A cells suggesting that it might represent a tumor cell-specific endocytic pathway. METHODOLOGY/PRINCIPAL FINDINGS: Similarly, using flow cytometry, we demonstrate that raft-dependent endocytosis of AMF/PGI is increased in metastatic HT29 cancer cells expressing low levels of caveolin-1 relative to metastatic, caveolin-1-expressing, HCT116 colon cells and non-metastatic Caco-2 cells. Therefore, we exploited the raft-dependent internalization of AMF/PGI as a potential tumor-cell specific targeting mechanism. We synthesized an AMF/PGI-paclitaxel conjugate and found it to be as efficient as free paclitaxel in inducing cytotoxicity and apoptosis in tumor cells that readily internalize AMF/PGI compared to tumor cells that poorly internalize AMF/PGI. Murine K1735-M1 and B16-F1 melanoma cells internalize FITC-conjugated AMF/PGI and are acutely sensitive to AMF/PGI-paclitaxel mediated cytotoxicity in vitro. Moreover, following in vivo intratumoral injection, FITC-conjugated AMF/PGI is internalized in K1735-M1 tumors. Intratumoral injection of AMF/PGI-paclitaxel induced significantly higher tumor regression compared to free paclitaxel, even in B16-F1 cells, known to be resistant to taxol treatment. Treatment with AMF/PGI-paclitaxel significantly prolonged the median survival time of tumor bearing mice. Free AMF/PGI exhibited a pro-survival role, reducing the cytotoxic effect of both AMF/PGI-paclitaxel and free paclitaxel suggesting that AMF/PGI-paclitaxel targets a pathway associated with resistance to chemotherapeutic agents. AMF/PGI-FITC uptake by normal murine spleen and thymus cells was negligible both in vitro and following intravenous injection in vivo where AMF/PGI-FITC was selectively internalized by subcutaneous B16-F1 tumor cells. CONCLUSIONS/SIGNIFICANCE: The raft-dependent endocytosis of AMF/PGI may therefore represent a tumor cell specific endocytic pathway of potential value for drug delivery to tumor cells.


Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Endocytosis/physiology , Glucose-6-Phosphate Isomerase/metabolism , Membrane Microdomains/physiology , Neoplasms/metabolism , Animals , Caco-2 Cells , Carcinoma/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , HT29 Cells , Humans , Melanoma/metabolism , Melanoma/pathology , Membrane Microdomains/metabolism , Mice , Neoplasms/drug therapy , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Receptors, Autocrine Motility Factor , Receptors, Cytokine/metabolism , Ubiquitin-Protein Ligases/metabolism
9.
Ann Surg Oncol ; 15(10): 2811-26, 2008 Oct.
Article En | MEDLINE | ID: mdl-18612701

BACKGROUND: Currently, a large proportion of individuals undergo thyroidectomy as a diagnostic procedure for cancer. The objective of this work was to evaluate the molecular phenotype of differentiated thyroid cancer (DTC) and benign thyroid lesions to identify molecular markers that allow for accurate thyroid cancer diagnosis. METHODS: Tissue microarrays consisting of 100 benign and 105 malignant thyroid lesions, plus 24 lymph node samples, were stained for a panel of 57 molecular markers. Significant associations between marker staining and tumor pathology (DTC versus benign) were determined using contingency table and Mann-Whitney U (MU) tests. A Random Forests classifier algorithm was also used to identify useful/important molecular classifiers. RESULTS: Of the 57 diagnostic markers evaluated 35 (61%) were significantly associated with a DTC diagnosis after multiple testing correction. Of these, in DTC compared with benign thyroid tumors, 8 markers were downregulated and 27 upregulated. The most significant markers for DTC diagnosis were: Galectin-3, Cytokeratin 19, Vascular Endothelial Growth Factor, Androgen Receptor, p16, Aurora-A, and HBME-1. Using the entire molecular marker panel, a Random Forests algorithm was able to classify tumors as DTC or benign with an estimated sensitivity of 87.9%, specificity of 94.0%, and an accuracy of 91.0%. CONCLUSION: Evaluation of the DTC and benign thyroid tumor molecular phenotype has allowed for identification of a marker panel, composed of both established and novel markers, useful for thyroid cancer diagnosis. These results suggest that further study of the molecular profile of thyroid tumors is warranted, and a diagnostic molecular marker panel may potentially improve patient selection for thyroid surgery.


Biomarkers, Tumor/metabolism , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/metabolism , Adenocarcinoma, Follicular/diagnosis , Adenocarcinoma, Follicular/metabolism , Adenoma, Oxyphilic/diagnosis , Adenoma, Oxyphilic/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoma, Papillary/diagnosis , Carcinoma, Papillary/metabolism , Cell Differentiation , Female , Humans , Immunoenzyme Techniques , Male , Middle Aged , Phenotype , Prognosis , Tissue Array Analysis
10.
Cancer Res ; 66(21): 10613-20, 2006 Nov 01.
Article En | MEDLINE | ID: mdl-17079486

Progression to androgen independence is the lethal end stage of prostate cancer. We used expression of androgen receptor (AR)-targeted short hairpin RNAs (shRNA) to directly test the requirement for AR in ligand-independent activation of androgen-regulated genes and hormone-independent tumor progression. Transient transfection of LNCaP human prostate cancer cells showed that AR shRNA decreased R1881 induction of the prostate-specific antigen (PSA)-luciferase reporter by 96%, whereas activation by forskolin, interleukin-6, or epidermal growth factor was inhibited 48% to 75%. Whereas the antiandrogen bicalutamide provided no further suppression, treatment with the mitogen-activated protein kinase (MAPK) inhibitor U0126 completely abrogated the residual activity, indicating a MAPK-dependent, AR-independent pathway for regulating the PSA promoter. Expression of doxycycline-inducible AR shRNA expression in LNCaP cells resulted in decreased levels of AR and PSA as well as reduced proliferation in vitro. When these cells were grown as xenografts in immunocompromised mice, induction of AR shRNA decreased serum PSA to below castration nadir levels and significantly retarded tumor growth over the entire 55-day experimental period. This is the first demonstration that, by inducibly suppressing AR expression in vivo, there is an extensive delay in progression to androgen independence as well as a dramatic inhibition of tumor growth and decrease in serum PSA, which exceeds that seen with castration alone. Based on these findings, we propose that suppressing AR expression may provide superior therapeutic benefit in reducing tumor growth rate than castration and may additionally be very effective in delaying progression to androgen independence.


Androgen Receptor Antagonists , Androgens/pharmacology , Prostatic Neoplasms/therapy , RNA, Small Interfering/pharmacology , Cell Line, Tumor , Disease Progression , Doxorubicin/pharmacology , Humans , Male , Promoter Regions, Genetic , Prostate-Specific Antigen/blood , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Transcriptional Activation
...