Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Sci Total Environ ; 929: 172632, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38653412

The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.


Antioxidants , Charcoal , Metals, Heavy , Microbiota , Prunus dulcis , Soil Microbiology , Soil Pollutants , Solanum lycopersicum , Charcoal/chemistry , Soil Pollutants/metabolism , Antioxidants/metabolism , Microbiota/drug effects , Biological Availability , Soil/chemistry
2.
Plant Physiol Biochem ; 211: 108639, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38688113

Melatonin (MT) is an extensively studied biomolecule with dual functions, serving as an antioxidant and a signaling molecule. Trichoderma Harzianum (TH) is widely recognized for its effectiveness as a biocontrol agent against many plant pathogens. However, the interplay between seed priming and MT (150 µm) in response to NaCl (100 mM) and its interaction with TH have rarely been investigated. This study aimed to evaluate the potential of MT and TH, alone and in combination, to mitigate salt stress (SS) in watermelon plants. The findings of this study revealed a significant decline in the morphological, physiological, and biochemical indices of watermelon seedlings exposed to SS. However, MT and TH treatments reduced the negative impact of salt stress. The combined application of MT and TH exerted a remarkable positive effect by increasing the growth, photosynthetic and gas exchange parameters, chlorophyll fluorescence indices, and ion balance (decreasing Na+ and enhancing K+). MT and TH effectively alleviated oxidative injury by inhibiting hydrogen peroxide formation in saline and non-saline environments, as established by reduced lipid peroxidation and electrolyte leakage. Moreover, oxidative injury induced by SS on the cells was significantly mitigated by regulation of the antioxidant system, AsA-GSH-related enzymes, the glyoxalase system, augmentation of osmolytes, and activation of several genes involved in the defense system. Additionally, the reduction in oxidative damage was examined by chloroplast integrity via transmission electron microscopy (TEM). Overall, the results of this study provide a promising contribution of MT and TH in safeguarding the watermelon crop from oxidative damage induced by salt stress.

3.
Front Microbiol ; 14: 1222844, 2023.
Article En | MEDLINE | ID: mdl-37692385

Aucuba japonica Thunb is an evergreen woody ornamental plant with significant economic and ecological values. It also produces aucubin, showing a variety of biological activities. It is widely planted in the southwest region of China, including karst landscape areas in Guizhou Province. In January 2022, a serious leaf blight disease was observed on the leaves of A. japonica in the outdoor gardens of Guizhou University, Guiyang, Guizhou, China. The causal agent was identified as Colletotrichum aenigma through amplification and sequencing of the internal transcribed spacer (ITS) region, translation of the chitin synthase (CHS) and actin (ACT) genes, and morphological characterizations. Koch's postulates were confirmed by its pathogenicity on healthy leaves, including re-isolation and identification. To our knowledge, this is the first report of C. aenigma causing leaf blight on A. japonica worldwide. To identify pathogen characteristics that could be utilized for future disease management, the effects of temperature and light on mycelial growth, conidia production, and conidial germination, and the effects of humidity on conidial germination were studied. Optimal temperatures for mycelial growth of C. aenigma BY827 were 25-30°C, while 15°C and 35°C were favorable for conidia production. Concurrently, alternating 10-h light and 14-h dark, proved to be beneficial for mycelial growth and conidial germination. Additionally, conidial germination was enhanced at 90% humidity. In vitro screenings of ten chemical pesticides to assess their efficacy in suppressing C. aenigma representative strain BY827. Among them, difenoconazole showed the best inhibition rate, with an EC50 (concentration for 50% of maximal effect) value of 0.0148 µg/ml. Subsequently, field experiment results showed that difenoconazole had the highest control efficiency on A. japonica leaf blight (the decreasing rate of disease incidence and decreasing rate of disease index were 44.60 and 47.75%, respectively). Interestingly, we discovered that C. aenigma BY827 may develop resistance to mancozeb, which is not reported yet among Colletotrichum spp. strains. In conclusion, our study provided new insights into the causal agent of A. japonica leaf blight, and the effective fungicides evaluated provided an important basis and potential resource for the sustainable control of A. japonica leaf blight caused by C. aenigma in the field.

4.
Plants (Basel) ; 12(12)2023 Jun 12.
Article En | MEDLINE | ID: mdl-37375921

Passion fruit is known to be sensitive to drought, and in order to study the physiological and biochemical changes that occur in passion fruit seedlings under drought stress, a hypertonic polyethylene glycol (PEG) solution (5%, 10%, 15%, and 20%) was used to simulate drought stress in passion fruit seedlings. We explored the physiological changes in passion fruit seedlings under drought stress induced by PEG to elucidate their response to drought stress and provide a theoretical basis for drought-resistant cultivation of passion fruit seedlings. The results show that drought stress induced by PEG had a significant effect on the growth and physiological indices of passion fruit. Drought stress significantly decreased fresh weight, chlorophyll content, and root vitality. Conversely, the contents of soluble protein (SP), proline (Pro), and malondialdehyde (MDA) increased gradually with the increasing PEG concentration and prolonged stress duration. After nine days, the SP, Pro and MDA contents were higher in passion fruit leaves and roots under 20% PEG treatments compared with the control. Additionally, with the increase in drought time, the activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) showed an increasing trend and then a decreasing trend, and they reached the highest value at the sixth day of drought stress. After rehydration, SP, Pro and MDA contents in the leaves and roots of passion fruit seedlings was reduced. Among all the stress treatments, 20% PEG had the most significant effect on passion fruit seedlings. Therefore, our study demonstrated sensitive concentrations of PEG to simulate drought stress on passion fruit and revealed the physiological adaptability of passion fruit to drought stress.

5.
Front Plant Sci ; 14: 1132861, 2023.
Article En | MEDLINE | ID: mdl-37143885

Continuous cropping of eggplant threatened regional ecological sustainability by facilitating replanting problems under mono-cropping conditions. Therefore, alternative agronomic and management practices are required to improve crop productivity at low environmental cost for the development of sustainable agricultural systems in different regions. This study examined changes in soil chemical properties, eggplant photosynthesis, and antioxidant functioning in five different vegetable cropping systems over a 2-year period., 2017 and 2018. The results showed that welsh onion-eggplant (WOE), celery-eggplant (CE), non-heading Chinese cabbage-eggplant (NCCE), and leafy lettuce-eggplant (LLE) rotation systems significantly impacted growth, biomass accumulation, and yield than fallow-eggplant (FE). In addition, various leafy vegetable cropping systems, WOE, CE, NCCE, and LLT induced significant increases in soil organic matter (SOM), available nutrients (N, P, and K), and eggplant growth by affecting the photosynthesis and related gas exchange parameters with much evident effect due to CE and NCCE. Moreover, eggplant raised with different leafy vegetable rotation systems showed higher activity of antioxidant enzymes, resulting in lower accumulation of hydrogen peroxide and hence reduced oxidative damage to membranes. In addition, fresh and dry plant biomass was significantly increased due to crop rotation with leafy vegetables. Therefore, we concluded that leafy vegetable crop rotation is a beneficial management practice to improve the growth and yield of eggplant.

6.
Front Physiol ; 13: 1018731, 2022.
Article En | MEDLINE | ID: mdl-36277215

Insecticide resistance poses many challenges in insect pest control, particularly in the control of destructive pests such as red imported fire ants (Solenopsis invicta). In recent years, beta-cypermethrin and fipronil have been extensively used to manage invasive ants, but their effects on resistance development in S. invicta are still unknown. To investigate resistance development, S. invicta was collected from populations in five different cities in Guangdong, China. The results showed 105.71- and 2.98-fold higher resistance against fipronil and beta-cypermethrin, respectively, in the Guangzhou population. The enzymatic activities of acetylcholinesterase, carboxylases, and glutathione S-transferases significantly increased with increasing beta-cypermethrin and fipronil concentrations. Transcriptomic analysis revealed 117 differentially expressed genes (DEGs) in the BC-ck vs. BC-30 treatments (39 upregulated and 78 downregulated), 109 DEGs in F-ck vs. F-30 (33 upregulated and 76 downregulated), and 499 DEGs in BC-30 vs. F-30 (312 upregulated and 187 downregulated). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs associated with insecticide resistance were significantly enriched in metabolic pathways, the AMPK signaling pathway, the insulin signaling pathway, carbon metabolism, peroxisomes, fatty acid metabolism, drug metabolism enzymes and the metabolism of xenobiotics by cytochrome P450. Furthermore, we found that DEGs important for insecticide detoxification pathways were differentially regulated under both insecticide treatments in S. invicta. Comprehensive transcriptomic data confirmed that detoxification enzymes play a significant role in insecticide detoxification and resistance development in S. invicta in Guangdong Province. Numerous identified insecticide-related genes, GO terms, and KEGG pathways indicated the resistance of S. invicta workers to both insecticides. Importantly, this transcriptome profile variability serves as a starting point for future research on insecticide risk evaluation and the molecular mechanism of insecticide detoxification in invasive red imported fire ants.

7.
Front Plant Sci ; 13: 849521, 2022.
Article En | MEDLINE | ID: mdl-35432401

Vegetable production under plastic sheds severely threatens regional eco-sustainability via anthropogenic activities (excessive use of agrochemicals, pesticides) and problems associated with replanting. Long-term successive cropping across growing seasons induces continuous cropping stress, whose effects manifest as diminished plant growth. Therefore, it is imperative that we develop environmentally sustainable approaches, such as replacing agrochemicals with vegetable waste like dry raw garlic stalk (DRGS) or use biofertilizers like arbuscular mycorrhizal fungi (AMF) (e.g., Diversispora epigaea). In this study, the influence of AMF on the growth, biochemical attributes, antioxidant defense system, phytohormones, accumulation of osmolytes, phenols, and mineral elements in eggplant grown on DRGS-amended soils under continuous monocropping (CMC) was studied. The results showed that inoculation with AMF or the DRGS amendment could improve the pigments' content, photosynthesis, and antioxidant defense system; augmented phytohormones synthesis (except for ABA), and increased the leaves' mineral nutrients. These parameters were enhanced most by the combined application of AMF and DRGS, which also increased the concentration of osmolytes, including proline, sugars, and free amino acids in eggplant when compared with the control. Furthermore, either AMF and DRGS alone, or in combination, ameliorated the induced stress from continuous cropping by reducing the incidence of Fusarium wilt and production of ROS (reactive oxygen species); lipid peroxidation underwent maximal reduction in plants grown under the combined treatments. The AMF, DRGS, and AMF + DRGS exhibited a lower disease severity index (33.46, 36.42, and 43.01%), respectively, over control. Hence, inoculation with AMF coupled with DRGS amendment alters the photosynthetic attributes in eggplant through the upregulation of its antioxidant system and greater accumulation of osmolytes, which led to the improved growth and yield of eggplant.

8.
Chemosphere ; 293: 133476, 2022 Apr.
Article En | MEDLINE | ID: mdl-35016964

Mitigation of greenhouse gas (GHGs) emissions and improving soil health using biochar (BC) shall help achieving the UN-Sustainable Development Goals. The impacts of walnut shells biochar (WSB) pyrolyzed at different temperatures on CO2 and N2O emission and soil health have not been yet sufficiently explored. We investigated the effects of addition of WSB pyrolyzed at either 300 °C (WSB-300), 450 °C (WSB-450), or at 600 °C (WSB-600) to alkaline soil on CO2 and N2O emissions, nutrients availability, and soil enzymes activities in a 120-day incubation experiment. Cumulative N2O emissions were reduced significantly as compared to the control, by 64.9%, 50.6%, and 36.4% after WSB-600, WSB-450 and WSB-300, respectively. However, the cumulative CO2 emissions increased, over the control, as follows: WSB-600 (50.7%), WSB-450 (68.6%), and WSB-300 (73.4%). Biochar addition, particularly WSB-600 significantly increased soil pH (from 8.1 to 8.34), soil organic C (SOC; from 8.6 to 22.3 g kg-1), available P (from 21.0 to 60.5 mg kg-1), and K (181.0-480.5 mg kg-1), and activities of urease, alkaline phosphatase, and invertase. However, an opposite pattern was observed with NH4+, NO3-, total N and ß-glucosidase activity after WSB application. The WBS produced from high temperature pyrolysis can be used for N2O emissions mitigation and improvement of soil pH, SOC, available P and K, and activities of urease, alkaline, phosphatase. However, WBS produced from low temperature pyrolysis can be used to promote N availability and ß-glucosidase; however, these findings should be verified under different field and climatic conditions.


Juglans , Soil , Agriculture , Carbon Dioxide/analysis , Charcoal , Nitrous Oxide/analysis , Nutrients
9.
Chemosphere ; 289: 133202, 2022 Feb.
Article En | MEDLINE | ID: mdl-34890613

Drought is a major environmental threat that affects plant growth and productivity. Strategies to mitigate the detrimental impacts of drought stress on plants are under scrutiny. Nanotechnology is considered an effective tool in resolving a wide range of environmental issues by offering novel and pragmatic solutions. A pot experiment was performed to determine the efficacy of zinc oxide nanoparticles (ZnO NPs) as a foliar application (25 mg L-1 and 100 mg L-1) on the growth performance of cucumber subjected to drought stress. Applied ZnO NPs under normal conditions resulted in significant growth and biomass enhancement while reducing drought-induced decline. Photosynthetic pigments, photosynthesis, and PSII activity enhanced due to ZnO NPs application, attaining maximal values at 100 mg L-1 of ZnO NPs. Drought stress restricted growth and biomass buildup in cucumber seedlings by stimulating oxidative stress, which was manifested to excessive buildup of reactive oxygen species (ROS) and peroxidation, thereby decreasing membrane functioning. Plants exposed to ZnO NPs exhibited a reduction in ROS accumulation and lipid peroxidation. The substantial reduction in oxidative damage was manifested with the enhancement of enzymatic and non-enzymatic antioxidant components. The phenol and mineral contents were reduced due to drought stress. In addition, the content of proline, glycine betaine, free amino acids, and sugars increased due to ZnO NPs under normal and drought conditions. Furthermore, the drought-induced decline in the content of phenol and mineral nutrients was mitigated by ZnO NPs foliar application. These findings reveal that exogenous ZnO NPs application may be a pragmatic option in dealing with the drought stress of cucumber seedlings.


Cucumis sativus , Nanoparticles , Zinc Oxide , Antioxidants , Droughts , Seedlings
10.
Front Physiol ; 13: 1112278, 2022.
Article En | MEDLINE | ID: mdl-36699674

Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.

11.
Plant Sci ; 313: 111095, 2021 Dec.
Article En | MEDLINE | ID: mdl-34763878

Photoperiod is dominant environmental factor that controls plant growth and development. Even though research on plants response to photoperiod is significant in agriculture, molecular mechanisms of garlic in response to photoperiod remain largely unknown. In the current investigation, 3 months old garlic plants were treated with long day (LD) and short day (SD) for 10 and 20 days after treatment (DAT). Liquid chromatography-mass spectrometry (LC-MS) analysis of phytohormones exhibited that indole-3-acetic acid (IAA), zeatin riboside (ZR) and salicylic acid (SA) were observed maximum under LD at 10 DAT, whereas abscisic acid (ABA), gibberellic acid 3 (GA3), zeatin (ZT) and jasmonic acid (JA) were observed maximum under LD at 20 DAT. Transcriptome sequencing analysis was done to evaluate the transcriptional response to LD and SD. Differentially expressed genes (DEGs) were detected to have pathway enrichment. i.e., DNA binding transcription factor activity, transcription regulator activity, transferase activity, transferring hexosyl groups, and sequence specific-DNA binding activity, plant hormone signal transduction, circadian rhythm-plant, biosynthesis of amino acids, phenylpropanoid biosynthesis, and starch and sucrose metabolism. Furthermore, 28 and 40 DEGs were identified related to photoperiod and hormone signaling, respectively and their interaction in response to LD and SD were discussed in detail. Outcomes of current investigation might be useful to provide novel resources for garlic bulb formation in response to photoperiod.


Adaptation, Ocular/genetics , Garlic/growth & development , Garlic/genetics , Photoperiod , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Signal Transduction/drug effects , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Transcriptome
12.
Ecotoxicol Environ Saf ; 215: 112132, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33743403

Aqueous garlic extracts (AGE) and garlic allelochemical diallyl disulfide (DADS) have been recently reported to bear bioactive properties to stimulate plant growth and development and alter defense-related physiology. We, therefore, performed a bioassay to study these chemicals as possible biostimulants for defense against Verticillium dahliae in eggplant seedlings. AGE and DADS were applied as a foliar application to the eggplants and samples were collected before and after pathogen inoculation at various intervals to analyze the defense mechanism. The obtained data revealed that with the application of AGE and DADS, the seedlings showed responses including activation of antioxidant enzymes, an abundance of chlorophyll contents, alteration of photosynthesis system, and accumulation of plant hormones compared to the control plants. Furthermore, the microscopic analysis of the AGE or DADS treated plants showed high variability in pathogen density within the root crown at 28 days post-inoculation. The low abundance of reactive oxygen species was noticed in AGE or DADS treated plants, which indicates that the plants were able to successfully encounter pathogen attacks. The AGE and DADS treated plants exhibited a lower disease severity index (32.4% and 24.8% vs 87.1% in controls), indicating successful defense against Verticillium infection. Our results were therefore among the first to address the biostimulatory effects of AGE or DADS to induce resistance in eggplant seedlings against V. dahliae and may be used to establish preparation for garlic-derived bioactive compounds to improve growth and defense responses of eggplants under-protected horticultural situations such as glasshouse or plastic tunnels system.


Garlic , Pheromones/pharmacology , Solanum melongena/physiology , Verticillium/drug effects , Allyl Compounds , Antioxidants/pharmacology , Ascomycota , Disulfides , Gene Expression Regulation, Plant/drug effects , Plant Diseases , Plant Growth Regulators , Reactive Oxygen Species , Seedlings/drug effects , Solanum melongena/drug effects , Verticillium/physiology
13.
Food Chem ; 338: 127991, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-32950867

Photoperiod and temperature are vital environmental factors that regulate plant developmental processes. However, the roles of these factors in garlic bulb enlargement are unclear. In this report, responses of garlic bulb morphology and physiology to combinations of photoperiod (light/dark: 10/14 h, 12/12 h, 14/10 h) and temperature (light/dark: 25/18 °C, 30/20 °C) were investigated. For garlic cultivar G103, bulb characteristics, phytohormones (IAA, ABA, ZT, tZR, JA), allicin and phenolic acids (p-coumaric and p-hydroxybenzoic) were highest under a photoperiod of 14 h at 30 °C. Maximum GA was observed under 14 h + 30 °C for cv. G2011-5. Maximum caffeic, ferulic and vanillic acids were detected for cv. G2011-5 at 14 h + 30 °C, 12 h + 25 °C and 14 h + 25 °C, respectively. Flavonoids (myricetin, quercetin, kaempferol and apigenin) were not detected in this trial. This is the first report describing the impact of long periods of light duration and higher temperatures on garlic morphology, phytohormones, phenolic acids and allicin content.


Garlic/growth & development , Garlic/radiation effects , Photoperiod , Plant Stems/growth & development , Plant Stems/radiation effects , Temperature , Plant Stems/chemistry
14.
Int J Mol Sci ; 21(17)2020 Aug 20.
Article En | MEDLINE | ID: mdl-32825476

Garlic substrate could influence plant growth through affecting soil microbiome structure. The relationship mechanism between changes in soil microbial communities, disease suppression and plant development, however, remains unclear, particularly in the degraded soil micro-ecological environment. In this study, garlic substrates as a soil amendment were incorporated with different ratios (1:100, 3:100 and 5:100 g/100 g of soil) in a replanted disturbed soil of long-term cucumber monoculture (annual double cropping system in a greenhouse). The results indicated that higher amount of C-amended garlic substrate significantly induced soil suppressiveness (35.9% greater than control (CK) against the foliar disease incidence rate. This inhibitory effect consequently improved the cucumber growth performance and fruit yield to 20% higher than the non-amended soil. Short-term garlic substrate addition modified the soil quality through an increase in soil organic matter (SOM), nutrient availability and enzymatic activities. Illumina MiSeq sequencing analysis revealed that soil bacterial and fungal communities in the garlic amendment were significantly different from the control. Species richness and diversity indices significantly increased under treated soil. The correlation-based heat map analysis suggested that soil OM, nutrient contents and biological activators were the primary drivers reshaping the microbial community structure. Furthermore, garlic substrate inhibited soil-borne pathogen taxa (Fusarium and Nematoda), and their reduced abundances, significantly affecting the crop yield. In addition, the host plant recruited certain plant-beneficial microbes due to substrate addition that could directly contribute to plant-pathogen inhibition and crop biomass production. For example, abundant Acidobacteria, Ascomycota and Glomeromycota taxa were significantly associated with cucumber yield promotion. Firmicutes, Actinobacteria, Bacteroidetes, Basidiomycota and Glomeromycota were the associated microbial taxa that possibly performed as antagonists of Fusarium wilt, with plant pathogen suppression potential in monocropped cucumber-planted soil.


Cucumis sativus/growth & development , Cucumis sativus/microbiology , Fusarium/pathogenicity , Garlic , Soil Microbiology , Agriculture/methods , Bacteria/genetics , Biodiversity , Chlorophyll/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Fungi/genetics , Microbiota/genetics , Nitrogen/analysis , Phosphorus/analysis , Plant Diseases/microbiology , Plant Leaves/physiology , Soil/chemistry
15.
Int J Mol Sci ; 21(4)2020 Feb 16.
Article En | MEDLINE | ID: mdl-32079095

The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.


Allium/growth & development , Gene Expression Regulation, Plant , Plant Roots/growth & development , Abscisic Acid/metabolism , Allium/genetics , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Isopentenyladenosine/analogs & derivatives , Isopentenyladenosine/genetics , Isopentenyladenosine/metabolism , Photoperiod , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Roots/genetics
16.
Plants (Basel) ; 9(2)2020 Jan 26.
Article En | MEDLINE | ID: mdl-31991938

Photoperiod (light) and temperature as abiotic factors having significant impact on the garlic bulb morphology and quality. In various bulb plants including garlic, bulbing is affected by photoperiod, temperature, sowing date and the plant age. In this backdrop experiments were performed to understand the effect of different photoperiods (10 h/14 h, 12 h/12 h and 14 h/10 h (light/dark)), temperatures (25 °C/18 °C and 30 °C/20 °C (light/dark)), sowing dates (D0801: 1st August, D0901: 1st September and D1001: 1st October) and plant ages (A80, A60 and A40: 80, 60 and 40 days after planting) on garlic cultivars viz; G103, G024 and G2011-5. Parameters including morphological (plant height, fresh weight and pseudostem diameter), bulb attributes (diameter, weight, height and bulbing index), growth period and bulb quality related traits (total soluble solid (TSS), contents of soluble protein, soluble sugar, total sugar, glucose, sucrose, fructose, starch, total phenol and total flavonoid) were assayed. Longer photoperiod (14 h), higher temperature (30 °C), early sowing (D0801) and maximum plant age (A80) had maximum morphological and bulb quality related traits for cv. G103. These results showed that early sowing, maximum plant age, longer photoperiod and higher temperature are important for garlic bulb formation and quality. Moreover, the regulation of garlic bulb morphology and quality is achievable over the switch of sowing date, plant age, light and growth temperature.

17.
Int J Mol Sci ; 20(9)2019 Apr 29.
Article En | MEDLINE | ID: mdl-31036790

The incorporation of plant residues into soil can be considered a keystone sustainability factor in improving soil structure function. However, the effects of plant residue addition on the soil microbial communities involved in biochemical cycles and abiotic stress phenomena are poorly understood. In this study, experiments were conducted to evaluate the role of raw garlic stalk (RGS) amendment in avoiding monoculture-related production constraints by studying the changes in soil chemical properties and microbial community structures. RGS was applied in four different doses, namely the control (RGS0), 1% (RGS1), 3% (RGS2), and 5% (RGS3) per 100 g of soil. The RGS amendment significantly increased soil electrical conductivity (EC), N, P, K, and enzyme activity. The soil pH significantly decreased with RGS application. High-throughput Illumina MiSeq sequencing revealed significant alterations in bacterial community structures in response to RGS application. Among the 23 major taxa detected, Anaerolineaceae, Acidobacteria, and Cyanobacteria exhibited an increased abundance level. RGS2 increased some bacteria reported to be beneficial including Acidobacteria, Bacillus, and Planctomyces (by 42%, 64%, and 1% respectively). Furthermore, internal transcribed spacer (ITS) fungal regions revealed significant diversity among the different treatments, with taxa such as Chaetomium (56.2%), Acremonium (4.3%), Fusarium (4%), Aspergillus (3.4%), Sordariomycetes (3%), and Plectosphaerellaceae (2%) showing much abundance. Interestingly, Coprinellus (14%) was observed only in RGS-amended soil. RGS treatments effectively altered soil fungal community structures and reduced certain known pathogenic fungal genera, i.e., Fusarium and Acremonium. The results of the present study suggest that RGS amendment potentially affects the microbial community structures that probably affect the physiological and morphological attributes of eggplant under a plastic greenhouse vegetable cultivation system (PGVC) in monoculture.


Garlic , High-Throughput Nucleotide Sequencing , Microbiota , Soil Microbiology , Solanum melongena , Biodiversity , Metagenome , Metagenomics/methods , Soil/chemistry
18.
Int J Mol Sci ; 20(7)2019 Mar 27.
Article En | MEDLINE | ID: mdl-30934751

Monotonous cucumber double-cropping systems under plastic greenhouse vegetable cultivation (PGVC) previously intensified by long-term anthropogenic activities and manipulative treatments leads to a crop productivity reduction and soil biota disturbances. In this study, the role of the indigenous arbuscular mycorrhizal strain (AM: Glomus versiforme L.) and organic substrate (GS: Garlic stalk) application were assessed for plant microbe interaction and crop productivity feedback in a greenhouse (2016⁻2018) under a cultivated Anthrosol characterized as a replanted degraded soil. We found that repetitively adding AM inocula with organic substrates (GS) improved the cucumber growth and physiology. The useful trait of AM symbiosis with C-amended organic substrates preferentially manifested as increased root colonization, hyphal density proliferation, AM sporulation, root activity, and suppressed Fusarium incidence. The post AM development further prevailed the synergistic interaction, and the co-inoculation effect resulted in an increase in fruit nutrition uptake, seasonal cucumber yield and fruit quality attributes. Illumina MiSeq analysis of the 18S rRNA gene amplicons revealed that the dominant AM genera that are particularly enriched with the Glomus taxon may be important ecological drivers associated with plant productivity and fruit quality characteristics. These results suggest that the AM-organic substrate association might be a pragmatic option for use as an economic and efficient biological resource and as a newly-sustainable plant microbe mediator to enhance the regional ecosystem services and plant productivity of the anthropogenic PGVC of this region.


Cucumis sativus/growth & development , Cucumis sativus/microbiology , Fruit/standards , Glomeromycota/physiology , Human Activities , Mycorrhizae/physiology , Organic Chemicals/pharmacology , Soil Microbiology , Biodiversity , Fruit/microbiology , Humans , Photosynthesis/drug effects , Plant Development/drug effects , Principal Component Analysis , Seasons , Soil
...