Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Sci Rep ; 14(1): 5313, 2024 03 04.
Article En | MEDLINE | ID: mdl-38438525

The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.


Cardiomyopathies , Humans , Connectin/genetics , Cardiomyopathies/genetics , Early Intervention, Educational , Genetic Counseling , Genetic Testing
2.
BMC Musculoskelet Disord ; 25(1): 241, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539162

BACKGROUND: Limb girdle muscular dystrophies (LGMDs) constitute a heterogeneous group of neuromuscular disorders with a very variable clinical presentation and overlapping traits. The clinical symptoms of LGMD typically appear in adolescence or early adulthood. Genetic variation in the dysferlin gene (DYSF) has been associated with LGMD. METHODS: We characterized a recessive LGMD in a young adult from consanguineous Irani families using whole-exome sequencing (WES) technology. Sanger sequencing was performed to verify the identified variant. Computational modeling and protein-protein docking were used to investigate the impact of the variant on the structure and function of the DYSF protein. RESULTS: By WES, we identified a novel homozygous missense variant in DYSF (NM_003494.4: c.5876T > C: p. Leu1959Pro) previously been associated with LGMD phenotypes. CONCLUSIONS: The identification and validation of new pathogenic DYSF variant in the present study further highlight the importance of this gene in LGMD.


Muscular Dystrophies, Limb-Girdle , Adult , Humans , Young Adult , Dysferlin/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Mutation, Missense , Phenotype
3.
BMC Cardiovasc Disord ; 24(1): 1, 2024 01 02.
Article En | MEDLINE | ID: mdl-38166572

BACKGROUND: Primary carnitine deficiency (PCD) denotes low carnitine levels with an autosomal recessive pattern of inheritance. Cardiomyopathy is the most common cardiac symptom in patients with PCD, and early diagnosis can prevent complications. Next-generation sequencing can identify genetic variants attributable to PCD efficiently. OBJECTIVE: We aimed to detect the genetic cause of the early manifestations of hypertrophic cardiomyopathy and metabolic abnormalities in an Iranian family. METHODS: We herein describe an 8-year-old boy with symptoms of weakness and lethargy diagnosed with PCD through clinical evaluations, lab tests, echocardiography, and cardiac magnetic resonance imaging. The candidate variant was confirmed through whole-exome sequencing, polymerase chain reaction, and direct Sanger sequencing. The binding efficacy of normal and mutant protein-ligand complexes were evaluated via structural modeling and docking studies. RESULTS: Clinical evaluations, echocardiography, and cardiac magnetic resonance imaging findings revealed hypertrophic cardiomyopathy as a clinical presentation of PCD. Whole-exome sequencing identified a new homozygous variant, SLC22A5 (NM_003060.4), c.821G > A: p.Trp274Ter, associated with carnitine transport. Docking analysis highlighted the impact of the variant on carnitine transport, further indicating its potential role in PCD development. CONCLUSIONS: The c.821G > A: p.Trp274Ter variant in SLC22A5 potentially acted as a pathogenic factor by reducing the binding affinity of organic carnitine transporter type 2 proteins for carnitine. So, the c.821G > A variant may be associated with carnitine deficiency, metabolic abnormalities, and cardiomyopathic characteristics.


Cardiomyopathies , Cardiomyopathy, Hypertrophic , Hyperammonemia , Muscular Diseases , Male , Humans , Child , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Carnitine/genetics , Carnitine/metabolism , Iran , Solute Carrier Family 22 Member 5/genetics , Hyperammonemia/diagnosis , Hyperammonemia/genetics , Hyperammonemia/complications , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/genetics , Cardiomyopathy, Hypertrophic/complications , Mutation
4.
Lab Med ; 55(1): 62-70, 2024 Jan 06.
Article En | MEDLINE | ID: mdl-37246508

OBJECTIVE: We studied the clinical and molecular features of a family with hypertrophic cardiomyopathy (HCM). BACKGROUND: A very heterogeneous disease affecting the heart muscle, HCM is mostly caused by variants in the proteins of sarcomeres. The detection of HCM pathogenic variants can affect the handling of patients and their families. METHODS: Whole-exome sequencing (WES) was performed to assess the genetic cause(s) of HCM in a consanguineous Iranian family. RESULTS: Missense likely pathogenic variant c.1279C>T (p.Arg427Cys) within exon 7 of the LMNA gene (NM_170707) was found. The segregations were confirmed by polymerase chain reaction-based Sanger sequencing. CONCLUSIONS: Variant c.1279C>T (p.Arg427Cys) in the LMNA gene seemed to have been the cause of HCM in the family. A few LMNA gene variants related to HCM phenotypes have been recognized so far. Identifying HCM genetic basis confers significant opportunities to understand how the disease can develop and, by extension, how this progression can be arrested. Our study supports WES effectiveness for first-tier variant screening of HCM in a clinical setting.


Cardiomyopathy, Hypertrophic , Humans , Exome Sequencing , Iran , Pedigree , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Phenotype , Mutation , Lamin Type A/genetics
5.
Lab Med ; 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38113391

BACKGROUND: Thoracic aortic aneurysm (TAA) is a multifactorial disorder. Familial TAA, which is more clinically aggressive, is associated with a high risk of lethal dissection or rupture. Genetic evaluation can provide TAA patients with personalized treatment and help in predicting risk to family members. OBJECTIVE: The purpose of this investigation was to report a likely pathogenic variant in the EFEMP2 gene that may contribute to TAA in a family with a documented history of the condition. METHODS: In the index patient, the causative genetic predisposition was identified using whole-exome sequencing. The potential likely pathogenic effect of the candidate variant was further analyzed through bioinformatics analysis, homology modeling, and molecular docking. RESULTS: The results revealed a likely pathogenic heterozygous variant, c.247C>T p.Arg83Cys, in exon 4 of the EFEMP2 gene (NM_016938), which was predicted to have disease-causing effects by MutationTaster, PROVEAN, SIFT, and CADD (phred score = 27.6). CONCLUSION: In this study, a likely pathogenic variant in the EFEMP2 gene was identified in an Iranian family with a dominant pattern of autosomal inheritance of TAA. This finding underscores the importance of conducting molecular genetic evaluations in families with nonsyndromic TAA and the significance of early detection of at-risk family members.

6.
BMC Med Genomics ; 16(1): 334, 2023 12 21.
Article En | MEDLINE | ID: mdl-38129817

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of sudden cardiac death and heart failure. Up to 50% of all DCM cases have a genetic background, with variants in over 250 genes reported in association with DCM. Whole-exome sequencing (WES) is a powerful tool to identify variants underlying genetic cardiomyopathies. Via WES, we sought to identify DCM causes in a family with 2 affected patients. METHODS: WES was performed on the affected members of an Iranian family to identify the genetic etiology of DCM. The candidate variant was segregated via polymerase chain reaction and Sanger sequencing. Computational modeling and protein-protein docking were performed to survey the impact of the variant on the structure and function of the protein. RESULTS: A novel single-nucleotide substitution (G > A) in exon 9 of MED12, c.1249G > A: p.Val417Ile, NM_005120.3, was identified. The c.1249G > A variant was validated in the family. Bioinformatic analysis and computational modeling confirmed that c.1249G > A was the pathogenic variant responsible for the DCM phenotype. CONCLUSION: We detected a novel DCM-causing variant in MED12 using WES. The variant in MED12 may decrease binding to cyclin-dependent kinase 8 (CDK8), affect its activation, and cause alterations in calcium-handling gene expression in the heart, leading to DCM.


Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/genetics , Iran , Heart , Phenotype , Death, Sudden, Cardiac , Pedigree , Mediator Complex/genetics
7.
J Cell Mol Med ; 27(12): 1621-1636, 2023 06.
Article En | MEDLINE | ID: mdl-37183561

Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.


Cardiovascular Diseases , MicroRNAs , Humans , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Phenotype , MicroRNAs/genetics
8.
Eur J Med Res ; 27(1): 286, 2022 Dec 10.
Article En | MEDLINE | ID: mdl-36496429

BACKGROUND: Congenital heart defects (CHDs) are the most common congenital malformations, including structural malformations in the heart and great vessels. CHD complications such as low birth weight, prematurity, pregnancy termination, mortality, and morbidity depend on the type of defect. METHODS: In the present research, genetic analyses via whole-exome sequencing (WES) was performed on 3 unrelated pedigrees with CHDs. The candidate variants were confirmed, segregated by PCR-based Sanger sequencing, and evaluated by bioinformatics analysis. RESULTS: A novel stop-gain c.C244T:p.R82X variant in the FLT4 gene, as well as a nonsynonymous c.C1403T:p.T468M variant in the PTPN11 gene, was reported by WES. FLT4 encodes a receptor tyrosine kinase involved in lymphatic development and is known as vascular endothelial growth factor 3. CONCLUSIONS: We are the first to report a novel c.C244T variant in the FLT4 gene associated with CHDs. Using WES, we also identified a nonsynonymous variant affecting protein-tyrosine phosphatase, the non-receptor type 11 (PTPN11) gene. The clinical implementation of WES can determine gene variants in diseases with high genetic and phenotypic heterogeneity like CHDs.


Heart Defects, Congenital , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Vascular Endothelial Growth Factor Receptor-3 , Humans , Heart Defects, Congenital/genetics , Pedigree , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics
9.
BMC Med Genomics ; 15(1): 234, 2022 11 07.
Article En | MEDLINE | ID: mdl-36344977

BACKGROUND: Familial dilated cardiomyopathy (DCM) is a genetic heart disorder characterized by progressive heart failure and sudden cardiac death. Over 250 genes have been reported in association with DCM; nonetheless, the genetic cause of most DCM patients has been unknown. The goal of the present study was to determine the genetic etiology of familial DCM in an Iranian family. METHODS: Whole-exome sequencing was performed to identify the underlying variants in an Iranian consanguineous family with DCM. The presence of the candidate variant was confirmed and screened in available relatives by PCR and Sanger sequencing. The pathogenic effect of the candidate variant was assessed by bioinformatics analysis, homology modeling, and docking. RESULTS: One novel likely pathogenic deletion, c.884_886del: p.Lys295del, in F-box only protein 32 (muscle-specific ubiquitin-E3 ligase protein; FBXO32) was identified. Based on bioinformatics and modeling analysis, c.884_886del was the most probable cause of DCM in the studied family. CONCLUSIONS: Our findings indicate that variants in FBXO32 play a role in recessive DCM. Variants in FBXO32 may disturb the degradation of target proteins in the ubiquitin-proteasome system and lead to severe DCM. We suggest considering this gene variants in patients with recessively inherited DCM.


Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/genetics , Exome Sequencing , Iran , Muscle Proteins/genetics , Ubiquitins/genetics , Pedigree , SKP Cullin F-Box Protein Ligases/genetics
10.
Lab Med ; 53(6): 640-650, 2022 Nov 03.
Article En | MEDLINE | ID: mdl-35686496

OBJECTIVE: Solute carrier family 19 member 2 (SLC19A2, OMIM *603941) encodes thiamine human transporter 1 (THTR-1), which contributes to bringing thiamine (vitamin B1) into cells. Mutations in SLC19A2 lead to a rare recessive genetic disorder termed thiamine-responsive megaloblastic anemia (TRMA) syndrome. METHODS: An Iranian family with TRMA was investigated by whole-exome sequencing (WES) to determine the genetic cause(s) of the disease. Accordingly, SLC19A2 genetic variants were gathered through literature analysis. RESULTS: WES recognized a known pathogenic variant, c.697C > T (p. Q233X), within exon 2 of SLC19A2 (NM_006996). Subsequently, the proband's parents and sister were confirmed as heterozygous carriers of the identified variant. CONCLUSION: The diagnostic utility and affordability of WES were confirmed as the first approach for the genetic testing of TRMA to verify the diagnosis. This analysis can be used to guide future prenatal diagnoses and determine the consequences in the other family members.


Anemia, Megaloblastic , Diabetes Mellitus , Humans , Anemia, Megaloblastic/diagnosis , Anemia, Megaloblastic/genetics , Anemia, Megaloblastic/pathology , Diabetes Mellitus/diagnosis , Iran , Membrane Transport Proteins/genetics , Mutation , Thiamine , Exome Sequencing , Male , Female , Pedigree
11.
J Cardiovasc Thorac Res ; 11(4): 287-299, 2019.
Article En | MEDLINE | ID: mdl-31824610

Introduction: Congenital heart disease (CHD) affects 1% to 2 % of live births. The Nkx2-5 gene, is known as the significant heart marker during embryonic evolution and it is also necessary for the survival of cardiomyocytes and homeostasis in adulthood. In this study, Nkx2-5 mutations are investigated to identify the frequency, distribution, functional consequences of mutations by using computational tools. Methods: A complete literature search was conducted to find Nkx2-5 mutations using the following key words: Nkx2-5 and/or CHD and mutations. The mutations were in silico analyzed using tools which predict the pathogenicity of the variants. A picture of Nkx2-5 protein and functional or structural effects of its variants were also figured using I-TASSER and STRING. Results: A total number of 105 mutations from 18 countries were introduced. The most (24.1%) and the least (1.49%) frequency of Nkx2-5 mutations were observed in Europe and Africa, respectively. The c.73C>T and c.533C>T mutations are distributed worldwide. c.325G>T (62.5%) and c.896A>G (52.9%) had the most frequency. The most numbers of Nkx2-5 mutations were reported from Germany. The c.541C>T had the highest CADD score (Phred score = 38) and the least was for c.380C>A (Phred score=0.002). 41.9% of mutations were predicted as potentially pathogenic by all prediction tools. Conclusion: This is the first report of the Nkx2-5 mutations evaluation in the worldwide. Given that the high frequency of mutation in Germany, and also some mutations were seen only in this country, therefore, presumably the main origin of Nkx2-5 mutations arise from Germany.

...