Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Inflammopharmacology ; 32(1): 795-808, 2024 Feb.
Article En | MEDLINE | ID: mdl-38095803

OBJECTIVE: Numerous therapeutics and pharmacological properties have been reported in syringic acid (SA). In this study, we aimed to evaluate effect of SA in ulcerative colitis (UC) in rats considering effect on TLR4, NF-κB, and INOS pathways. MATERIALS AND METHODS: 48 Wistar rats were randomly designated into six groups (n = 8). UC was induced via intra-rectal administration of 7% acetic acid (0.8 ml). SA at doses of 10, 25, 50 mg/kg was administrated through gavage, and dexamethasone (2 mg/kg) administrated intra-peritoneally for 5 consecutive days. The macroscopic and histopathological damages as well as expression of inflammatory and apoptotic genes along with superoxide dismutase (SOD) and catalase (CAT) activities, total antioxidant capacity (TAC), nitric oxide (NO), and malondialdehyde (MDA) levels in the colon tissue were assessed. RESULTS: UC led to an increase in the apoptotic and inflammatory genes, NO and MDA levels as well as decrease in TAC level, and SOD and CAT activities (p < 0.05). UC also caused severe damage, edema, inflammation, and necrosis in the colon. SA significantly reduced gene expressions of INOS, TLR4, IL-6, IL-1ß, NF-κB, Caspase-3, Caspase-8, and Bax. SA ameliorated negative macroscopic and histopathologic effects of UC. SA significantly reduced MDA and NO levels, and increased TAC level and CAT activity in the colon tissue in comparison to the UC rats without treatment (p < 0.05). CONCLUSION: SA via attenuation of the TLR4-NF-κB, NF-κB-INOS-NO pathways, oxidative stress, inflammation, and apoptosis of UC in rats.


Colitis, Ulcerative , Gallic Acid/analogs & derivatives , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/therapeutic use , Inflammation , Superoxide Dismutase/metabolism
2.
Immun Inflamm Dis ; 11(8): e926, 2023 08.
Article En | MEDLINE | ID: mdl-37647443

OBJECTIVE: In this study, the therapeutic effect of quinic acid (QA), which has anti-inflammatory activity, was investigated on acetic acid-induced colitis in male Wistar rats. METHODS: Ulcerative colitis (UC) was induced in rats by acetic acid intrarectally, and the protective effects of QA in 10, 30, 60, and 100 mg/kg doses were investigated. Rats were treated for 5 days and their colon tissues were dissected out at the end. Macroscopic and histopathological examinations were performed in colon tissues. Also, the expression of inflammatory and apoptotic genes, including TLR4, IL-1ß, INOS, IL-6, TNF-α, NF-κB, Caspase-3, Caspase-8, Bax, and Bcl-2, was measured. Biochemistry indices, such as malondialdehyde (MDA) and nitrite oxide (NO) content, in addition to, total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), and enzymes activities were also assessed. RESULTS: Colitis increased the levels of MDA and NO, and enhanced the inflammatory and apoptotic gene expressions, while reducing the SOD and CAT enzymes activity, and TAC levels in the colitis rats. Also, results showed that colitis was associated with the infiltration of inflammatory cells, epithelium damage, and edema in colon tissue. QA significantly ameliorated histopathological indices, oxidative stress, inflammation, and apoptosis in colitis rats. CONCLUSION: QA ameliorated UC through the inhibition of two TLR4-NF-κB and NF-κB-INOS-NO signaling pathways, which results in the reduction of colitis complications, including oxidative stress, inflammation, apoptosis and histopathological injuries in rats. Therefore it can be concluded, that QA exerts its therapeutic effects through antiapoptotic, antioxidant, and anti-inflammatory properties.


Colitis, Ulcerative , Colitis , Male , Rats , Animals , NF-kappa B , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Nitrites , Quinic Acid , Toll-Like Receptor 4/genetics , Antioxidants/pharmacology , Rats, Wistar , Inflammation , Acetic Acid
3.
Inflammopharmacology ; 31(5): 2587-2597, 2023 Oct.
Article En | MEDLINE | ID: mdl-37432553

INTRODUCTION: Ulcerative colitis is a chronic inflammation of the colon. However, the common treatment for it is accompanied by many complications. Therefore, the present study was aimed to determine the ameliorative effects of ferulic acid on acetic acid-induced colitis in rat. MATERIALS AND METHODS: To induce ulcerative colitis, animals received 0.8 ml of 7% acetic acid intra-rectally. Ferulic acid in 20, 40, and 60 mg/kg doses was administered orally one hour after the ulcerative colitis induction. Animals received treatments for five consecutive days and then were euthanized on the sixth day. The colon was dissected out and macroscopic lesions were examined. Colon samples were evaluated for histopathological examination, biochemical analysis, determination of the expression of inflammatory, and apoptotic genes as well as total antioxidant capacity. RESULTS: Ferulic acid significantly inhibited inflammatory and apoptotic genes mRNA expression, also production of MDA and NO. Ferulic acid significantly increased the activity of antioxidant factors (TAC content, and SOD and CAT activity), thereby preventing inflammation and histopathological damage in the colon tissue of colitis rats. CONCLUSION: The results of the present study confirmed the antioxidant, anti-inflammatory, and anti-apoptotic properties of ferulic acid. About the mechanism of action of this compound, it can be concluded that the ability of ferulic acid in the amelioration of ulcerative colitis is related to the inhibition of two LPS-TLR4-NF-κB and NF-κB-INOS-NO signaling pathways.


Colitis, Ulcerative , Colitis , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Antioxidants/metabolism , Colon , Colitis/drug therapy , Oxidative Stress , Inflammation/metabolism , Acetic Acid/pharmacology
4.
Int Immunopharmacol ; 120: 110309, 2023 Jul.
Article En | MEDLINE | ID: mdl-37182450

BACKGROUND: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes uncontrolled inflammation and ulcers in your digestive tract. The coumaric acid and syringic acid are phenolic derivative found in many fruits and vegetables and is widely recognized for the ability of anti-parasitic, anti-microbial, anti-viral, anti-inflammatory, and antioxidant. The purpose of this study was to investigate the anti-inflammatory and antioxidant properties of coumaric acid and syringic acid on acetic acid-induced colitis in rats. METHODS: A total of 64 male Wistar rats were divided into eight equal groups (n = 8). Colitis was induced by intrarectal administration of acetic acid, and rats orally received coumaric acid (100 and 150 mg/kg), syringic acid (10, 25, and 50 mg/kg), and dexamethasone (2 mg/kg) once per day for four days after colitis induction. Then, HO-1, Nrf2, and NQO1 mRNA expression were quantified by real time-PCR. Finally, the tissue levels of TNF-α and IL-1ß protein were measured by ELISA. RESULTS: Colitis led to a decrease in HO-1, Nrf2, and NQO1 mRNA expression and an increase in the tissue levels of TNF-α and IL-1ß protein in the colon tissue. Treatment with dexamethasone significantly increased HO-1, Nrf2, and NQO1 mRNA expression and decreased the tissue levels of TNF-α and IL-1ß protein compared to the UC group. Treatment with 150 mg/kg of coumaric acid and 50 mg/kg of syringic acid significantly increased HO-1, Nrf2, and NQO1 mRNA expression compared to the UC group. Also, treatment with 100 and 150 mg/kg of coumaric acid and 10, 25, and 50 mg/kg of syringic acid significantly decreased the tissue levels of TNF-α and IL-1ß protein compared to the UC group. CONCLUSION: The coumaric acid and syringic acid, especially at high doses, may be an alternative strategy for the treatment of UC by the reduction of TNF-α and IL-1ß levels and upregulation of the Nrf2/HO-1 pathway.


Colitis, Ulcerative , Animals , Male , Rats , Acetic Acid/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon/metabolism , Coumaric Acids/therapeutic use , Cytokines/metabolism , Dexamethasone/therapeutic use , NF-E2-Related Factor 2/metabolism , Rats, Wistar , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Inflammopharmacology ; 30(6): 2359-2371, 2022 Dec.
Article En | MEDLINE | ID: mdl-36190687

OBJECTIVE: Due to the high side effects of commonly used drugs and according to the pharmacological properties reported for coumaric acid (CA), this study was designed to determine the impact of CA on acetic acid-induced colitis in rats, considering its possible anti-inflammatory, antioxidant, and anti-apoptotic properties. MATERIALS AND METHODS: Forty-eight male Wistar rats were divided into 6 equal groups (n = 8). Colitis was induced by acetic acid intrarectally. CA in three different doses (50, 100, and 150 mg/kg) was administrated for 5 days. Finally, the macroscopic and histopathological changes in the colon tissue were examined. The expression of inflammatory and apoptotic genes, including NF-κB, TNF-α, INOS, IL-1ß, IL-6, TLR4, Caspase-3, Caspase-8, Bax, Bcl-2 was assessed. In addition, changes in the levels of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), nitrite, and total antioxidant capacity (TAC) were measured in the colon tissue. RESULTS: Colitis led to a decrease in TAC and the activity levels of CAT and SOD and an increase in the expression of inflammatory and apoptotic genes, MDA, and nitrite levels in the colon. Colitis was also associated with edema and severe damage to the epithelium, infiltration of inflammatory cells, and the presence of ulcers and necrosis in the colon tissue. CA significantly improved the inflammation, oxidative stress, apoptosis, and histopathological indices caused by acetic acid-induced colitis on the colon. CONCLUSION: It is concluded that CA probably exerts its positive effects in the management of colitis, through its anti-inflammatory, antioxidant, and anti-apoptotic properties.


Colitis , Coumaric Acids , Rats , Male , Animals , Coumaric Acids/pharmacology , Antioxidants/metabolism , Nitrites/metabolism , Rats, Wistar , Oxidative Stress , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Apoptosis , Colon , Superoxide Dismutase/metabolism , Anti-Inflammatory Agents/therapeutic use , Acetic Acid/pharmacology
6.
BMC Bioinformatics ; 23(1): 311, 2022 Aug 02.
Article En | MEDLINE | ID: mdl-35918631

BACKGROUND: Cervical cancer is the fourth most common cancer affecting women and is caused by human Papillomavirus (HPV) infections that are sexually transmitted. There are currently commercially available prophylactic vaccines that have been shown to protect vaccinated individuals against HPV infections, however, these vaccines have no therapeutic effects for those who are previously infected with the virus. The current study's aim was to use immunoinformatics to develop a multi-epitope vaccine with therapeutic potential against cervical cancer. RESULTS: In this study, T-cell epitopes from E5 and E7 proteins of HPV16/18 were predicted. These epitopes were evaluated and chosen based on their antigenicity, allergenicity, toxicity, and induction of IFN-γ production (only in helper T lymphocytes). Then, the selected epitopes were sequentially linked by appropriate linkers. In addition, a C-terminal fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) was used as an adjuvant for the vaccine construct. The physicochemical parameters of the vaccine construct were acceptable. Furthermore, the vaccine was soluble, highly antigenic, and non-allergenic. The vaccine's 3D model was predicted, and the structural improvement after refinement was confirmed using the Ramachandran plot and ProSA-web. The vaccine's B-cell epitopes were predicted. Molecular docking analysis showed that the vaccine's refined 3D model had a strong interaction with the Toll-like receptor 4. The structural stability of the vaccine construct was confirmed by molecular dynamics simulation. Codon adaptation was performed in order to achieve efficient vaccine expression in Escherichia coli strain K12 (E. coli). Subsequently, in silico cloning of the multi-epitope vaccine was conducted into pET-28a ( +) expression vector. CONCLUSIONS: According to the results of bioinformatics analyses, the multi-epitope vaccine is structurally stable, as well as a non-allergic and non-toxic antigen. However, in vitro and in vivo studies are needed to validate the vaccine's efficacy and safety. If satisfactory results are obtained from in vitro and in vivo studies, the vaccine designed in this study may be effective as a therapeutic vaccine against cervical cancer.


Human papillomavirus 16 , Uterine Cervical Neoplasms , Computational Biology/methods , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/chemistry , Escherichia coli/metabolism , Female , Human papillomavirus 18/genetics , Humans , Molecular Docking Simulation , Vaccines, Subunit/chemistry , Vaccines, Subunit/metabolism
7.
Sci Rep ; 12(1): 7757, 2022 05 11.
Article En | MEDLINE | ID: mdl-35545650

Ebola virus (EBOV) is a dangerous zoonotic infectious disease. To date, more than 25 EBOV outbreaks have been documented, the majority of which have occurred in Central Africa. The rVSVG-ZEBOV-GP vaccine (ERVEBO), a live attenuated vaccine, has been approved by the US Food and Drug Administration (FDA) to combat EBOV. Because of the several drawbacks of live attenuated vaccines, multi-epitope vaccines probably appear to be safer than live attenuated vaccines. In this work, we employed immunoinformatics tools to design a multi-epitope vaccine against EBOV. We collected sequences of VP35, VP24, VP30, VP40, GP, and NP proteins from the NCBI database. T-cell and linear B-cell epitopes from target proteins were identified and tested for antigenicity, toxicity, allergenicity, and conservancy. The selected epitopes were then linked together in the vaccine's primary structure using appropriate linkers, and the 50S ribosomal L7/L12 (Locus RL7 MYCTU) sequence was added as an adjuvant to the vaccine construct's N-terminal. The physicochemical, antigenicity, and allergenicity parameters of the vaccine were all found to be satisfactory. The 3D model of the vaccine was predicted, refined, and validated. The vaccine construct had a stable and strong interaction with toll-like receptor 4 (TLR4) based on molecular docking and molecular dynamic simulation (MD) analysis. The results of codon optimization and in silico cloning revealed that the proposed vaccine was highly expressed in Escherichia coli (E. coli). The findings of this study are promising; however, experimental validations should be carried out to confirm these findings.


Ebolavirus , Hemorrhagic Fever, Ebola , Computational Biology/methods , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Escherichia coli , Hemorrhagic Fever, Ebola/prevention & control , Humans , Molecular Docking Simulation , Vaccines, Attenuated , Vaccines, Subunit , Vaccinology/methods
8.
Article En | MEDLINE | ID: mdl-35432569

Anethole has possessed anti-inflammatory and antioxidant responses in numerous studies. Oxidative stress has a pivotal role in the pathophysiology of colitis. The current study is designed to determine the effect of anethole on acetic acid-induced colitis in mice in view of its possible anti-inflammatory and antioxidant properties. In this study, 48 mice were grouped into 6 groups (n = 8), and colitis was induced with 0.2 ml of 7% acetic acid. Mice received intraperitoneally (i.p.) for 7 constant days normal saline and/or anethole at doses of 31.25, 62.5, 125, and 250 mg/kg, respectively. After treatments, the colon was dissected out, and histopathological changes, expression of inflammatory genes (IL-1ß, TNF-α, and TLR4), and evaluation of malondialdehyde (MDA) levels and total antioxidant capacity (TAC) were assessed. The results showed that colitis is associated with edema and inflammatory responses in all layers and severe damage to the epithelium of the colon. Colitis causes a decrease in TAC, an increase in MDA levels, and an increase in inflammatory genes in the colon. Findings determined that anethole ameliorated the adverse effects of acetic acid-induced colitis in the colon. It is concluded that anethole, partially at least, possessed protective effects in acetic acid-induced colitis in mice through attenuation of oxidative stress and inflammatory response.

9.
Sci Rep ; 11(1): 12397, 2021 06 11.
Article En | MEDLINE | ID: mdl-34117331

Cervical cancer, caused by human papillomavirus (HPV), is the fourth most common type of cancer among women worldwide. While HPV prophylactic vaccines are available, they have no therapeutic effects and do not clear up existing infections. This study aims to design a therapeutic vaccine against cervical cancer using reverse vaccinology. In this study, the E6 and E7 oncoproteins from HPV16 were chosen as the target antigens for epitope prediction. Cytotoxic T lymphocytes (CTL) and helper T lymphocytes (HTL) epitopes were predicted, and the best epitopes were selected based on antigenicity, allergenicity, and toxicity. The final vaccine construct was composed of the selected epitopes, along with the appropriate adjuvant and linkers. The multi-epitope vaccine was evaluated in terms of physicochemical properties, antigenicity, and allergenicity. The tertiary structure of the vaccine construct was predicted. Furthermore, several analyses were also carried out, including molecular docking, molecular dynamics (MD) simulation, and in silico cloning of the vaccine construct. The results showed that the final proposed vaccine could be considered an effective therapeutic vaccine for HPV; however, in vitro and in vivo experiments are required to validate the efficacy of this vaccine candidate.


Cancer Vaccines/immunology , Epitopes/immunology , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/prevention & control , Cancer Vaccines/chemistry , Computational Biology , Epitopes/chemistry , Female , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/chemistry , Papillomavirus E7 Proteins/immunology , Papillomavirus Vaccines/chemistry , Repressor Proteins/chemistry , Repressor Proteins/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology
10.
Comput Biol Med ; 133: 104390, 2021 06.
Article En | MEDLINE | ID: mdl-33895459

In December 2019, a new virus called SARS-CoV-2 was reported in China and quickly spread to other parts of the world. The development of SARS-COV-2 vaccines has recently received much attention from numerous researchers. The present study aims to design an effective multi-epitope vaccine against SARS-COV-2 using the reverse vaccinology method. In this regard, structural proteins from SARS-COV-2, including the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins, were selected as target antigens for epitope prediction. A total of five helper T lymphocytes (HTL) and five cytotoxic T lymphocytes (CTL) epitopes were selected after screening the predicted epitopes for antigenicity, allergenicity, and toxicity. Subsequently, the selected HTL and CTL epitopes were fused via flexible linkers. Next, the cholera toxin B-subunit (CTxB) as an adjuvant was linked to the N-terminal of the chimeric structure. The proposed vaccine was analyzed for the properties of physicochemical, antigenicity, and allergenicity. The 3D model of the vaccine construct was predicted and docked with the Toll-like receptor 4 (TLR4). The molecular dynamics (MD) simulation was performed to evaluate the stable interactions between the vaccine construct and TLR4. The immune simulation was also conducted to explore the immune responses induced by the vaccine. Finally, in silico cloning of the vaccine construct into the pET-28 (+) vector was conducted. The results obtained from all bioinformatics analysis stages were satisfactory; however, in vitro and in vivo tests are essential to validate these results.


COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , China , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , Vaccines, Subunit
11.
ARYA Atheroscler ; 10(4): 192-8, 2014 Jul.
Article En | MEDLINE | ID: mdl-25258634

BACKGROUND: Diabetes mellitus, one of the leading metabolic syndromes, accounts for highest morbidity and mortality worldwide. In this study, we examined possible protective effect of coenzyme Q10 on lipid profile, atherogenic index, and liver enzyme markers in alloxan-induced type 1 diabetic rats. METHODS: A total of 30 male rats were randomly divided into three groups; group 1 as control, group 2 diabetic untreatment, and group 3 treatments with coenzyme Q10 by 15 mg/kg i.p. daily, respectively .Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), very low-density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index, atherogenic coefficient, cardiac risk ratio, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed using non-parametric Mann-Whitney test (using SPSS) and P < 0.05 was considered as significant. RESULTS: Coenzyme Q10 inhibited significantly the activities of ALT (11.17%), AST (19.35%) and ALP (36.67%) and decreased FBG (21.19%), TG (37.24%), TC (17.15%), LDL (30.44%), VLDL (37.24%), atherogenic index (44.24%), atherogenic coefficient (49.69%), and cardiac risk ratio (37.97%), HDL level was significantly (33.38%) increased when treated with coenzyme Q10. CONCLUSION: The findings of this study suggest that coenzyme Q10 exert beneficial effects on the lipid profile, atherogenic index, and liver enzymes activity in alloxan-induced type 1 diabetic rats.

12.
Ren Fail ; 36(3): 413-8, 2014 Apr.
Article En | MEDLINE | ID: mdl-24320085

Coenzyme Q10 is a natural antioxidant and scavenger of free radicals. In the present study, we examined the effect of coenzyme Q10 on paraoxonase 1 (PON1) activity, lipid profile, atherogenic indexes and relationship of PON 1 activity by high-density lipoprotein (HDL) and atherogenic indexes in gentamicin (GM)-induced nephrotoxicity rats. Thirty Sprague-Dawley rats were divided into three groups to receive saline; GM, 100 mg/kg/d; and GM plus coenzyme Q10 by 15 mg/kg i.p daily, respectively. After 12 days, animals were anaesthetized, blood samples were also collected before killing to measure the levels of triglyceride (TG), cholesterol (C), low-density lipoprotein (LDL), very low density lipoprotein (VLDL), HDL, atherogenic indexes and the activities of PON1 of all groups were analyzed. Data were analyzed by non-parametric Mann-Whitney test (using SPSS 13 software). Coenzyme Q10 significantly decreased TG, C, LDL, VLDL, atherogenic index, atherogenic coefficient and cardiac risk ratio. HDL level and PON1 activity were significantly increased when treated with coenzyme Q10. Also, the activity of PON 1 correlated positively with HDL and negatively with atherogenic coefficient, cardiac risk ratio 1 and cardiac risk ratio 2. This study showed that coenzyme Q10 exerts beneficial effects on PON1 activity, lipid profile, atherogenic index and correlation of PON 1 activity with HDL and atherogenic index in GM -induced nephrotoxicity rats.


Aryldialkylphosphatase/blood , Kidney Diseases/blood , Kidney Diseases/enzymology , Lipid Peroxidation/drug effects , Lipids/blood , Ubiquinone/analogs & derivatives , Animals , Cholesterol/blood , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Gentamicins , Kidney Diseases/chemically induced , Male , Rats , Rats, Sprague-Dawley , Triglycerides/blood , Ubiquinone/pharmacology
13.
Rep Biochem Mol Biol ; 3(1): 14-20, 2014 Oct.
Article En | MEDLINE | ID: mdl-26989732

BACKGROUND: The aim of this study was to evaluate the possible protective effect of sodium selenite on serum, liver, and kidney antioxidant enzymes activities in alloxan-induced type 1 diabetic rats. METHODS: Forty Sprague-Dawley male rats were randomly divided into four groups; Group one as control, Group two as sham-treated with sodium selenite by 1 mg/kg intraperitoneal (i.p.) injections daily, Group three as diabetic untreated, and Group four as diabetic treated with sodium selenite by 1 mg/kg i.p. injections daily .Diabetes was induced in the third and fourth groups by subcutaneous alloxan injections. After eight weeks the animals were euthanized and livers and kidneys were immediately removed and used fresh or kept frozen until analysis. Before the rats were killed blood samples were also collected to measure glutathione peroxidase (GPX) and catalase (CAT) activities in sera. RESULTS: Glutathione peroxidase and CAT activities serum, liver, and kidney were all significantly less in the diabetic rats than in the controls. Sodium selenite treatment of the diabetic rats resulted in significant increases in GPX activity in the kidneys and livers, and CAT activity in the sera and livers. CONCLUSIONS: Our results indicate that sodium selenite might be a potent antioxidant that exerts beneficial effects on both GPX and CAT activities in alloxan-induced type 1 diabetic rats.

...