Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 12(1): 5946, 2022 04 08.
Article En | MEDLINE | ID: mdl-35396460

The study investigated the effect of organic/biofertilizers in intercropping patterns on seed yield and yield components and essential oil, fatty acid, and phenolic compounds of fennel (Foeniculum vulgare L.) and fenugreek (Trigonella foenum-graecum L.). Experimental treatments included the application of humic acid (HA), biofertilizers (BFS), and the unfertilized control in five planting patterns [1 row fennel + 2 rows fenugreek intercropping (1F:2FG), 2 rows fennel + 2 rows fenugreek intercropping (2F:2FG), 2 rows fennel + 4 rows fenugreek intercropping (2F:4FG), and sole cropping of each species]. Sole cropping with BFS produced the highest seed yields for fennel (2233 kg ha-1) and fenugreek (1240 kg ha-1). In contrast, the 2F:2FG intercropping ratio with BFS yielded the maximum fixed oil content for fennel (17.4%) and fenugreek (8.3%). Application of HA and BFS enhanced oil yields by 66% and 75% in fennel and 40% and 57% in fenugreek, respectively. The 2F:2FG intercropping ratio with BFS produced the maximum essential oil constituents [(E)-anethole, estragole, and fenchone] in fennel. In addition, 2F:4FG with BFS and 1F:1FG with HA produced the highest unsaturated fatty acid (oleic and linoleic acids) concentration in both species. The 2F:2FG intercropping ratio with BFS and HA produced the highest chlorogenic acid and quercetin contents, respectively, in fennel. In contrast, the 2F:4FG intercropping ratio with HA produced the highest chlorogenic acid and caffeic acid contents in fenugreek. Intercropping fennel/fenugreek with BFS or HA improved the essential oil content (fennel only), fixed oil quality and quantity, and phenolic compounds and created a more sustainable cultivation system than sole cropping systems for both species under low-input conditions.


Foeniculum , Oils, Volatile , Trigonella , Chlorogenic Acid , Humic Substances , Phenols
2.
Article En | MEDLINE | ID: mdl-32474051

A monolithic mixed matrix membrane of functionalized multi-walled carbon nanotubes-polyethersulfone (MWCNT/PES) was prepared in a non-covalent approach and employed as an SPME fiber for extraction of chlorophenols (CPs). The proposed extraction method was followed by GC-ECD to determine the analytes. The influencing factors on the extraction efficiency such as pH, ionic strength, extraction and desorption temperature and time were studied. Under the selected conditions, calibration curves were linear over a wide concentration range from 0.005 to 1000 µgL-1 (r2 > 0.9961) for target analytes. In addition, the limits of detection (LOD) of the method were obtained in the range of 0.3-30 ng L-1. The relative standard deviation (RSD) for single fiber repeatability (n = 5) is from 1.4 to 4.6%. Fiber-to-fiber repeatability (n = 3) was also evaluated and the RSD is in the range of 1.3-6.3%. Applications of proposed fiber for extraction of CPs from the headspace of urine and serum samples were successfully investigated. The relative recovery in the biological samples spiked with different levels of CPs were in the range of 91.6-102.5%.


Chlorophenols , Nanotubes, Carbon/chemistry , Polymers/chemistry , Solid Phase Microextraction/methods , Sulfones/chemistry , Chlorophenols/blood , Chlorophenols/isolation & purification , Chlorophenols/urine , Chromatography, Gas/methods , Humans , Limit of Detection , Linear Models , Nanocomposites/chemistry , Reproducibility of Results
5.
J Chromatogr A ; 1374: 50-57, 2014 Dec 29.
Article En | MEDLINE | ID: mdl-25476686

A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs.


Chromatography, Gas/methods , Nanotubes, Carbon/chemistry , Oryza/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Microextraction/methods , Water/chemistry , Limit of Detection , Reproducibility of Results , Smoke/analysis
6.
Chemosphere ; 93(9): 1920-6, 2013 Nov.
Article En | MEDLINE | ID: mdl-23906812

A novel nanocomposite based on incorporation of multiwalled carbon nanotubes (MWCNTs) in polyvinyl chloride (PVC) was prepared. Proposed nanocomposite was coated on stainless steel wire by deep coating. Composition of nanocomposite was optimized based on results of morphological studies using scanning electron microscopy. The best composition (83% MWCNTs:17% PVC) was applied as a solid phase microextraction fiber. Complex mixture of aromatic (BTEX) and aliphatic hydrocarbons (C5-C34) were selected as model analytes, and performance of proposed fiber in extraction of the studied compounds from water and soil samples was evaluated. Analytical merits of the method for water samples (LODs=0.10-1.10 ng L(-1), r(2)=0.9940-0.9994) and for soil samples (LODs=0.10-0.77 ng kg(-1), r(2)=0.9946-0.9994) showed excellent characteristics of it in ultra trace determination of petroleum type environmental pollutants. Finally, the method was used for determination of target analytes in river water, industrial effluent and soil samples.


Environmental Monitoring/methods , Nanotubes, Carbon/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Polyvinyl Chloride/chemistry , Soil/chemistry , Solid Phase Microextraction
...