Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8674, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622364

RESUMEN

Distinguishing syngenetic from protogenetic inclusions in natural diamonds is one of the most debated issues in diamond research. Were the minerals that now reside in inclusions in diamonds born before the diamond that hosts them (protogenesis)? Or did they grow simultaneously and by the same reaction (syngenesis)? Once previously published data on periclase [(Mg,Fe)O] and magnesiochromite (MgCr2O4) inclusions in diamond have been re-analysed, we show that the main arguments reported so far to support syngenesis between diamond and its mineral inclusions, definitely failed. Hence: (a) the epitaxial relationships between diamond and its mineral inclusion should no longer be used to support syngenesis, because only detecting an epitaxy does not tell us which was the nucleation substrate (there are evidences that in case of epitaxy, the inclusion acts as a nucleation substrate); (b) the morphology of the inclusion should no longer be used as well, as inclusions could be protogenetic regardless their shapes. Finally, we advance the hypothesis that the majority of inclusions in diamonds are protogenetic, e.g., they are constituent of rocks in which diamonds were formed and not products of reactions during diamond growth.

2.
IMA Fungus ; 14(1): 25, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049914

RESUMEN

Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.

3.
Forensic Sci Int Genet ; 64: 102841, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36774834

RESUMEN

The human oral microbiome has primarily been studied in clinical settings and for medical purposes. More recently, oral microbial research has been incorporated into other areas of study. In forensics, research has aimed to exploit the variation in composition of the oral microbiome to answer forensic relevant topics, such as human identification and geographical provenience. Several studies have focused on the use of microbiome for continental, national, or ethnic origin evaluations. However, it is not clear how the microbiome varies between similar ethnic populations across different regions in a country. We report here a comparison of the oral microbiomes of individuals living in two regions of Italy - Lombardy and Piedmont. Oral samples were obtained by swabbing the donors' oral mucosa, and the V4 region of the 16S rRNA gene was sequenced from the extracted microbial DNA. Additionally, we compared the oral and the skin microbiome from a subset of these individuals, to provide an understanding of which anatomical region may provide more robust results that can be useful for forensic human identification. Initial analysis of the oral microbiota revealed the presence of a core oral microbiome, consisting of nine taxa shared across all oral samples, as well as unique donor characterising taxa in 31 out of 50 samples. We also identified a trend between the abundance of Proteobacteria and Bacteroidota and the smoking habits, and of Spirochaetota and Synergistota and the age of the enrolled participants. Whilst no significant differences were observed in the oral microbial diversity of individuals from Lombardy or Piedmont, we identified two bacterial families - Corynebacteriaceae and Actinomycetaceae - that showed abundance trends between the two regions. Comparative analysis of the skin and oral microbiota showed significant differences in the alpha (p = 0.0011) and beta (Pr(>F)= 9.999e-05) diversities. Analysis of skin and oral samples from the same donor further revealed that the skin microbiome contained more unique donor characterising taxa than the oral one. Overall, this study demonstrates that whilst the oral microbiome of individuals from the same country and of similar ethnicity are largely similar, there may be donor characterising taxa that might be useful for identification purposes. Furthermore, the bacterial signatures associated with certain lifestyles could provide useful information for investigative purposes. Finally, additional studies are required, the skin microbiome may be a better discriminant for human identification than the oral one.


Asunto(s)
Microbiota , Humanos , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Análisis de Secuencia de ADN , Mucosa Bucal
4.
Microb Ecol ; 85(1): 184-196, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34907449

RESUMEN

Soil fungal diversity was studied by next-generation sequencing and compared in two different Malagasy ecosystems, the first a New Protected Area (Maromizaha NAP) that is a rich humid evergreen forest and the second a degraded and declined deciduous forest (Andaravina) whose area has been also eroded. Both areas, however, have comparable annual rainfalls and soil pH values. So it was of interest to examine the soil fungal diversity in each system and compare them. We detected 1,817,658 reads representing Ascomycota, which were dominant in both habitats (55.9%), followed by unidentified fungi (21.5%), Basidiomycota (12.7%) and Mortierellomycota (6.7%), with Mucoromycota, Chytridiomycota, Glomeromycota and other phyla accounting for less than 5% in total. In detail, 1,142 OTUs out of 1,368 constitute the common core shared by both sampling areas, which are characterized by tropical climate, whereas 185 are Maromizaha specific and 41 Andaravina specific. The most represented guilds involve fungi related to saprotrophic behaviour, with a greater tendency towards pathotrophic mode. A significant variability in terms of richness and abundance is present within Maromizaha, which is a heterogeneous environment for fungi but also for plant composition, as it emerged from the vegetational survey of the investigated sites. A few fungal sequences match taxa from Madagascar, highlighting the scarce representativeness of fungi from this island in the fungal databases and their still low knowledge. Enlarging studies in Madagascar will help not only to unravel its largely unknown fungal biodiversity but also to give a contribution for studies on the reconstruction of the diversity of soil fungi worldwide.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Madagascar , Microbiología del Suelo , Bosques , Hongos/genética
5.
J Appl Crystallogr ; 55(Pt 5): 1289-1296, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249497

RESUMEN

2D and 3D epitaxies of the main {010}, {001} and {100} forms of deposited bassanite (CaSO4·0.5H2O) on {10.4} calcite (CaCO3) as a substrate are described to provide a theoretical crystallographic background for the replacement of calcite by bassanite both in nature and in the laboratory and by weathering linked to cultural heritage. First, epitaxy in the third dimension, perpendicular to the investigated interfaces, has been verified in order to establish whether adsorption/absorption can occur (as anomalous mixed crystals) at the bassanite/calcite epi-contacts. Secondly, and by applying the Hartman-Perdok method, 2D lattice coincidences have been obtained from the physical-geometric matches of bonds running in the common directions within the elementary slices facing the substrate/deposit interfaces. This research represents the second and more detailed part of a wider program extended to the epi-interactions between the following pairs: (i) {010}-gypsum/{10.4}-calcite (just published); (ii) bassanite/{10.4}-calcite (the present work); and (iii) anhydrite (CaSO4)/{10.4}-calcite (coming soon).

6.
Front Plant Sci ; 13: 992395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247634

RESUMEN

Olea europaea L. is a glycophyte representing one of the most important plants in the Mediterranean area, both from an economic and agricultural point of view. Its adaptability to different environmental conditions enables its cultivation in numerous agricultural scenarios, even on marginal areas, characterized by soils unsuitable for other crops. Salt stress represents one current major threats to crop production, including olive tree. In order to overcome this constraint, several cultivars have been evaluated over the years using biochemical and physiological methods to select the most suitable ones for cultivation in harsh environments. Thus the development of novel methodologies have provided useful tools for evaluating the adaptive capacity of cultivars, among which the evaluation of the plant-microbiota ratio, which is important for the maintenance of plant homeostasis. In the present study, four olive tree cultivars (two traditional and two for intensive cultivation) were subjected to saline stress using two concentrations of salt, 100 mM and 200 mM. The effects of stress on diverse cultivars were assessed by using biochemical analyses (i.e., proline, carotenoid and chlorophyll content), showing a cultivar-dependent response. Additionally, the olive tree response to stress was correlated with the leaf endophytic bacterial community. Results of the metabarcoding analyses showed a significant shift in the resident microbiome for plants subjected to moderate salt stress, which did not occur under extreme salt-stress conditions. In the whole, these results showed that the integration of stress markers and endophytic community represents a suitable approach to evaluate the adaptation of cultivars to environmental stresses.

7.
Forensic Sci Int Genet ; 59: 102686, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35338895

RESUMEN

Human DNA samples can remain unaltered for years and preserve important genetic information for forensic investigations. In fact, besides human genetic information, these extracts potentially contain additional valuable information: microbiome signatures. Forensic microbiology is rapidly becoming a significant tool for estimating post-mortem interval (PMI), and establishing cause of death and personal identity. To date, the possibility to recover unaltered microbiome signatures from human DNA extracts has not been proven. This study examines the microbiome signatures within human DNA extracts obtained from six cadavers with different PMIs, which were stored frozen for 5-16 years. Results demonstrated that the microbiome can be co-extracted with human DNA using forensic kits designed to extract the human host's DNA from different tissues and fluids during decomposition. We compared the microbial communities identified in these samples with microbial DNA recovered from two human cadavers donated to the Forensic Anthropology Center at Texas State University (FACTS) during multiple decomposition stages, to examine whether the microbial signatures recovered from "old" (up to 16 years) extracts are consistent with those identified in recently extracted microbial DNA samples. The V4 region of 16 S rRNA gene was amplified and sequenced using Illumina MiSeq for all DNA extracts. The results obtained from the human DNA extracts were compared with each other and with the microbial DNA from the FACTS samples. Overall, we found that the presence of specific microbial taxa depends on the decomposition stage, the type of tissue, and the depositional environment. We found no indications of contamination in the microbial signatures, or any alterations attributable to the long-term frozen storage of the extracts, demonstrating that older human DNA extracts are a reliable source of such microbial signatures. No shared Core Microbiome (CM) was identified amongst the total 18 samples, but we identified certain species in association with the different decomposition stages, offering potential for the use of microbial signatures co-extracted with human DNA samples for PMI estimation in future. Unveiling the new significance of older human DNA extracts brings with it important ethical-legal considerations. Currently, there are no shared legal frameworks governing the long-term storage and use of human DNA extracts obtained from crime scene evidence for additional research purposes. It is therefore important to create common protocols on the storage of biological material collected at crime scenes. We review existing legislation and guidelines, and identify some important limitations for the further development and application of forensic microbiomics.


Asunto(s)
Microbiota , Ácidos Nucleicos , Cadáver , ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microbiota/genética
8.
J Exp Bot ; 73(1): 292-306, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34436573

RESUMEN

Significant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density. In particular, the tolerant accession had improved root plasma membrane integrity and K+ retention in the mature root zone in response to salt. Furthermore, superior ST in the tolerant Q68 was associated with faster and root-specific H2O2 accumulation and reactive oxygen species-induced K+ and Ca2+ fluxes in the root apex within 30 min after NaCl application. This was found to be associated with the constitutive up-regulation of the membrane-localized receptor kinases regulatory protein FERONIA in the tolerant accession. Taken together, this study shows that differential root signalling events upon salt exposure are essential for the halophytic quinoa; the failure to do this limits quinoa adaptation to salinity, independently of salt sequestration in EBCs.


Asunto(s)
Chenopodium quinoa , Tolerancia a la Sal , Peróxido de Hidrógeno , Raíces de Plantas , Salinidad , Plantas Tolerantes a la Sal
9.
Plant J ; 108(6): 1547-1564, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767660

RESUMEN

As other arbuscular mycorrhizal fungi, Gigaspora margarita contains unculturable endobacteria in its cytoplasm. A cured fungal line has been obtained and showed it was capable of establishing a successful mycorrhizal colonization. However, previous OMICs and physiological analyses have demonstrated that the cured fungus is impaired in some functions during the pre-symbiotic phase, leading to a lower respiration activity, lower ATP, and antioxidant production. Here, by combining deep dual-mRNA sequencing and proteomics applied to Lotus japonicus roots colonized by the fungal line with bacteria (B+) and by the cured line (B-), we tested the hypothesis that L. japonicus (i) activates its symbiotic pathways irrespective of the presence or absence of the endobacterium, but (ii) perceives the two fungal lines as different physiological entities. Morphological observations confirmed the absence of clear endobacteria-dependent changes in the mycorrhizal phenotype of L. japonicus, while transcript and proteomic datasets revealed activation of the most important symbiotic pathways. They included the iconic nutrient transport and some less-investigated pathways, such as phenylpropanoid biosynthesis. However, significant differences between the mycorrhizal B+/B- plants emerged in the respiratory pathways and lipid biosynthesis. In both cases, the roots colonized by the cured line revealed a reduced capacity to activate genes involved in antioxidant metabolism, as well as the early biosynthetic steps of the symbiotic lipids, which are directed towards the fungus. Similar to its pre-symbiotic phase, the intraradical fungus revealed transcripts related to mitochondrial activity, which were downregulated in the cured line, as well as perturbation in lipid biosynthesis.


Asunto(s)
Burkholderiaceae/fisiología , Hongos/fisiología , Lotus/microbiología , Micorrizas/fisiología , Simbiosis/fisiología , Antioxidantes/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Lotus/fisiología , Mitocondrias/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Análisis de Componente Principal , Estrés Fisiológico
10.
J Forensic Leg Med ; 82: 102223, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34343925

RESUMEN

Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Dermatoglifia del ADN/métodos , Microbiota , ARN Ribosómico 16S/análisis , Piel/microbiología , Tacto , Adulto , Anciano , Amelogenina/genética , ADN/aislamiento & purificación , Conjuntos de Datos como Asunto , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Proyectos Piloto , Análisis de Secuencia de ARN
11.
Environ Microbiol ; 23(10): 5917-5933, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34320277

RESUMEN

The desert truffle Terfezia claveryi is one of the few mycorrhizal fungi currently in cultivation in semiarid and arid areas. Agroclimatic parameters seem to affect its annual yield, but there is no information on the influence of biotic factors. In this study, fungal diversity was analysed by high-throughput sequencing of the ITS2 rDNA region from soil and root samples to compare productive and non-productive mycorrhizal plants in a 4-years old plantation (Murcia, Spain). The fungal metaprofile was dominated by Ascomycota phylum. Desert truffle productivity was driven by different patterns of fungal species composition in soil (species replacement) and root (species richness differences). Moreover, positive associations for ectomycorrhizal and negative for arbuscular mycorrhizal guilds were found in productive roots, and positive associations for fungal parasite-plant pathogen guild in non-productive ones. Soil samples were dominated by pathotroph and saprotroph trophic modes, showing positive associations for Aureobasidium pullulans and Alternaria sp. in productive areas, and positive associations for Fusarium sp. and Mortierella sp. were found in non-productive soils. Finally, some significant OTUs were identified and associated to ascocarp producing patches, which could serve as predictive and location markers of desert truffle production.


Asunto(s)
Ascomicetos , Micorrizas , Ascomicetos/genética , Micorrizas/genética , Raíces de Plantas , Plantas , Suelo/química , Microbiología del Suelo
12.
Physiol Plant ; 173(4): 1392-1420, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33847396

RESUMEN

Soil salinity is among the major abiotic stresses that plants must cope with, mainly in arid and semiarid regions. The tolerance to high salinity is an important agronomic trait to sustain food production. Quinoa is a halophytic annual pseudo-cereal species with high nutritional value that can secrete salt out of young leaves in external non-glandular cells called epidermal bladder cells (EBC). Previous work showed high salt tolerance, but low EBC density was associated with an improved response in the early phases of salinity stress, mediated by tissue-tolerance traits mainly in roots. We compared the transcript profiling of two quinoa genotypes with contrasting salt tolerance patterning to identify the candidate genes involved in the differentially early response among genotypes. The transcriptome profiling, supported by in vitro physiological analyses, provided insights into the early-stage molecular mechanisms, both at the shoot and root level, based on the sensitive/tolerance traits. Results showed the presence of numerous differentially expressed genes among genotypes, tissues, and treatments, with genes involved in hormonal and stress response upregulated mainly in the sensitive genotype, suggesting that tolerance may be correlated to restricted changes in gene expression, at least after a short salt stress. These data, showing constitutive differences between the two genotypes, represent a solid basis for further studies to characterize the salt tolerance traits. Additionally, new information provided by this work might be useful for the development of plant breeding or genome engineering programs in quinoa.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Salinidad , Estrés Salino , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal , Estrés Fisiológico/genética
13.
Int J Mol Sci ; 21(17)2020 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-32842492

RESUMEN

Viticulture is one of the horticultural systems in which antifungal treatments can be extremely frequent, with substantial economic and environmental costs. New products, such as biofungicides, resistance inducers and biostimulants, may represent alternative crop protection strategies respectful of the environmental sustainability and food safety. Here, the main purpose was to evaluate the systemic molecular modifications induced by biocontrol products as laminarin, resistance inducers (i.e., fosetyl-Al and potassium phosphonate), electrolyzed water and a standard chemical fungicide (i.e., metiram), on the transcriptomic profile of 'Nebbiolo' grape berries at harvest. In addition to a validation of the sequencing data through real-time polymerase chain reaction (PCR), for the first-time the expression of some candidate genes in different cell-types of berry skin (i.e., epidermal and hypodermal layers) was evaluated using the laser microdissection approach. Results showed that several considered antifungal treatments do not strongly affect the berry transcriptome profile at the end of season. Although some treatments do not activate long lasting molecular defense priming features in berry, some compounds appear to be more active in long-term responses. In addition, genes differentially expressed in the two-cell type populations forming the berry skin were found, suggesting a different function for the two-cell type populations.


Asunto(s)
Agentes de Control Biológico/farmacología , Frutas/efectos de los fármacos , Fungicidas Industriales/farmacología , Vitis/efectos de los fármacos , Vitis/genética , Ditiocarba/farmacología , Electrólisis , Frutas/citología , Frutas/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucanos/farmacología , Italia , Captura por Microdisección con Láser , Compuestos Organofosforados/farmacología , Vitis/citología , Agua/química
14.
Microorganisms ; 8(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825267

RESUMEN

Mono- and polycyclic aromatic hydrocarbons (PAHs) are widespread and recalcitrant pollutants that threaten both environmental and human health. By exploiting the powerful enzymatic machinery of fungi, mycoremediation in contaminated sites aims at removing a wide range of pollutants in a cost-efficient and environmentally friendly manner. Next-generation sequencing (NGS) techniques are powerful tools for understanding the molecular basis of biotransformation of PAHs by selected fungal strains, allowing genome mining to identify genetic features of biotechnological value. Trichoderma lixii MUT3171, isolated from a historically PAH-contaminated soil in Italy, can grow on phenanthrene, as a sole carbon source. Here, we report the draft genome sequence of T. lixii MUT3171 obtained with high-throughput sequencing method. The genome of T. lixii MUT3171 was compared with other 14 Trichoderma genomes, highlighting both shared and unique features that can shed a light on the biotransformation of PAHs. Moreover, the genes potentially involved in the production of important biosurfactants and bioactive molecules have been investigated. The gene repertoire of T. lixii MUT3171 indicates a high degrading potential and provides hints on putative survival strategies in a polluted environment.

15.
Front Microbiol ; 11: 1686, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793158

RESUMEN

Decomposition of animal bodies in the burial environment plays a key role in the biochemistry of the soil, altering the balance of the local microbial populations present before the introduction of the carcass. Despite the growing number of studies on decomposition and soil bacterial populations, less is known on its effects on fungal communities. Shifts in the fungal populations at different post-mortem intervals (PMIs) could provide insights for PMI estimation and clarify the role that specific fungal taxa have at specific decomposition stages. In this study, we buried pig carcasses over a period of 1- to 6-months, and we sampled the soil in contact with each carcass at different PMIs. We performed metabarcoding analysis of the mycobiome targeting both the internal transcribed spacer (ITS) 1 and 2, to elucidate which one was more suitable for this purpose. Our results showed a decrease in the fungal taxonomic richness associated with increasing PMIs, and the alteration of the soil fungal signature even after 6 months post-burial, showing the inability of soil communities to restore their original composition within this timeframe. The results highlighted taxonomic trends associated with specific PMIs, such as the increase of the Mortierellomycota after 4- and 6-months and of Ascomycota particularly after 2 months, and the decrease of Basidiomycota from the first to the last time point. We have found a limited number of taxa specifically associated with the carrion and not present in the control soil, showing that the major contributors to the recorded changes are originated from the soil and were not introduced by the carrion. As this is the first study conducted on burial graves, it sets the baseline for additional studies to investigate the role of fungal communities on prolonged decomposition periods and to identify fungal biomarkers to improve the accuracy of PMI prediction for forensic applications.

16.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32720684

RESUMEN

Microbial communities associated with plants are greatly influenced by water availability in soil. In flooded crops, such as rice, the impact of water management on microbial dynamics is not fully understood. Here, we present a comprehensive study of the rice microbiota investigated in an experimental field located in one of the most productive areas of northern Italy. The microbiota associated with paddy soil and root was investigated using 454 pyrosequencing of 16S, ITS and 18S rRNA gene amplicons under two different water managements, upland (non-flooded, aerobic) and lowland (traditional flooding, anaerobic), at three plant development stages. Results highlighted a major role of the soil water status in shaping microbial communities, while phenological stage had low impacts. Compositional shifts in prokaryotic and fungal communities upon water management consisted in significant abundance changes of Firmicutes, Methanobacteria, Chloroflexi, Sordariomycetes, Dothideomycetes and Glomeromycotina. A vicariance in plant beneficial microbes and between saprotrophs and pathotrophs was observed between lowland and upland. Moreover, through network analysis, we demonstrated different co-abundance dynamics between lowland and upland conditions with a major impact on microbial hubs (strongly interconnected microbes) that fully shifted to aerobic microbes in the absence of flooding.


Asunto(s)
Microbiota , Oryza , Bacterias/genética , Italia , Raíces de Plantas , Rizosfera , Suelo , Microbiología del Suelo , Agua , Abastecimiento de Agua
18.
Environ Microbiol ; 22(1): 122-141, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621176

RESUMEN

As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF, Glomeromycotina) symbiotically colonize plant roots. AMF also possess their own microbiota, hosting some uncultivable endobacteria. Ongoing research has revealed the genetics underlying plant responses to colonization by AMF, but the fungal side of the relationship remains in the dark. Here, we sequenced the genome of Gigaspora margarita, a member of the Gigasporaceae in an early diverging group of the Glomeromycotina. In contrast to other AMF, G. margarita may host distinct endobacterial populations and possesses the largest fungal genome so far annotated (773.104 Mbp), with more than 64% transposable elements. Other unique traits of the G. margarita genome include the expansion of genes for inorganic phosphate metabolism, the presence of genes for production of secondary metabolites and a considerable number of potential horizontal gene transfer events. The sequencing of G. margarita genome reveals the importance of its immune system, shedding light on the evolutionary pathways that allowed early diverging fungi to interact with both plants and bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Glomeromycota/fisiología , Micorrizas/fisiología , Raíces de Plantas/microbiología , Plantas/microbiología , Simbiosis/fisiología , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Transferencia de Gen Horizontal , Genoma Fúngico/genética , Glomeromycota/genética , Microbiota/genética
19.
Microorganisms ; 8(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878183

RESUMEN

Next-generation approaches have enabled researchers to deeply study the plant microbiota and to reveal how microbiota associated with plant roots has key effects on plant nutrition, disease resistance, and plant development. Although early "omics" experiments focused mainly on the species composition of microbial communities, new "meta-omics" approaches such as meta-transcriptomics provide hints about the functions of the microbes when interacting with their plant host. Here, we used an RNA-seq dataset previously generated for tomato (Solanum lycopersicum) plants growing on different native soils to test the hypothesis that host-targeted transcriptomics can detect the taxonomic and functional diversity of root microbiota. Even though the sequencing throughput for the microbial populations was limited, we were able to reconstruct the microbial communities and obtain an overview of their functional diversity. Comparisons of the host transcriptome and the meta-transcriptome suggested that the composition and the metabolic activities of the microbiota shape plant responses at the molecular level. Despite the limitations, mining available next-generation sequencing datasets can provide unexpected results and potential benefits for microbiota research.

20.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31371401

RESUMEN

Tissue repair is an adaptive and widespread metazoan response. It is characterised by different cellular mechanisms and complex signalling networks that involve numerous growth factors and cytokines. In higher animals, transforming growth factor-ß (TGF-ß) signalling plays a fundamental role in wound healing. In order to evaluate the involvement of TGF superfamily members in lower invertebrate tissue regeneration, sequences for putative TGF ligands and receptors were isolated from the transcriptome of the marine sponge Chondrosia reniformis We identified seven transcripts that coded for TGF superfamily ligands and three for TGF superfamily receptors. Phylogenetically, C. reniformis TGF ligands were not grouped into any TGF superfamily clades and thus presumably evolved independently, whereas the TGF receptors clustered in the Type I receptor group. We performed gene expression profiling of these transcripts in sponge regenerating tissue explants. Data showed that three ligands (TGF1, TGF3 and TGF6) were mainly expressed during early regeneration and seemed to be involved in stem cell maintenance, whereas two others (TGF4 and TGF5) were strongly upregulated during late regeneration and thus were considered pro-differentiating factors. The presence of a strong TGF inhibitor, SB431542, blocked the restoration of the exopinacoderm layer in the sponge explants, confirming the functional involvement of the TGF pathway in tissue regeneration in these early evolved animals.


Asunto(s)
Familia de Multigenes/fisiología , Poríferos/fisiología , Regeneración/genética , Factores de Crecimiento Transformadores/genética , Animales , Perfilación de la Expresión Génica , Factores de Crecimiento Transformadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA