Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3016, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021146

RESUMEN

Telomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Dominios Proteicos , Estructuras R-Loop , ARN , Ribonucleasa H , Alineación de Secuencia , Telómero , Factores de Transcripción/genética
2.
Nat Struct Mol Biol ; 27(5): 424-437, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32398827

RESUMEN

Oncogene activation during tumorigenesis generates DNA replication stress, a known driver of genome rearrangements. In response to replication stress, certain loci, such as common fragile sites and telomeres, remain under-replicated during interphase and subsequently complete locus duplication in mitosis in a process known as 'MiDAS'. Here, we demonstrate that RTEL1 (regulator of telomere elongation helicase 1) has a genome-wide role in MiDAS at loci prone to form G-quadruplex-associated R-loops, in a process that is dependent on its helicase function. We reveal that SLX4 is required for the timely recruitment of RTEL1 to the affected loci, which in turn facilitates recruitment of other proteins required for MiDAS, including RAD52 and POLD3. Our findings demonstrate that RTEL1 is required for MiDAS and suggest that RTEL1 maintains genome stability by resolving conflicts that can arise between the replication and transcription machineries.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , G-Cuádruplex , Genoma Humano/genética , Mitosis , Animales , Línea Celular , ADN Helicasas/química , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Inestabilidad Genómica , Humanos , Inmunoprecipitación , Ratones , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Conformación de Ácido Nucleico , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
3.
PLoS Genet ; 16(3): e1008422, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187176

RESUMEN

The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Carcinogénesis/genética , Saccharomyces cerevisiae/genética , Animales , Daño del ADN/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Genómica/métodos , Proteína Homóloga de MRE11/genética , Mutación/genética , Células Sf9 , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética
4.
Cell Rep ; 10(10): 1665-1673, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25772354

RESUMEN

The NAD+-dependent protein deacetylase SIRT1 regulates energy metabolism, responses to stress, and aging by deacetylating many different proteins, including histones and transcription factors. The mechanisms controlling SIRT1 enzymatic activity are complex and incompletely characterized, yet essential for understanding how to develop therapeutics that target SIRT1. Here, we demonstrate that the N-terminal domain of SIRT1 (NTERM) can trans-activate deacetylation activity by physically interacting with endogenous SIRT1 and promoting its association with the deacetylation substrate NF-κB p65. Two motifs within the NTERM domain contribute to activation of SIRT1-dependent activities, and expression of one of these motifs in mice is sufficient to lower fasting glucose levels and improve glucose tolerance in a manner similar to overexpression of SIRT1. Our results provide insights into the regulation of SIRT1 activity and a rationale for pharmacological control of SIRT1-dependent activities.

5.
Appl Environ Microbiol ; 69(8): 4994-6, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12902299

RESUMEN

Scopulariopsis brevicaulis, the anamorph of Microascus brevicaulis (Microascaceae, Ascomycota), has been identified in the body contents of the tick Dermacentor variabilis. After topical application of the fungal inoculum, tick mortality was marked. This is the first account describing the internal mycoflora of D. variabilis with a novel technique used to recover potential biological control agents.


Asunto(s)
Ascomicetos/aislamiento & purificación , Dermacentor/microbiología , Ecología , Control Biológico de Vectores , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...