Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Chem ; 16(7): 1042-1044, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38760433
2.
Proc Natl Acad Sci U S A ; 121(18): e2316408121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657047

RESUMEN

Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky's charge-hydropathy plot may behave as "marginal IDPs" and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK's sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Pliegue de Proteína , Dicroismo Circular , Estructura Secundaria de Proteína , Humanos , Transferencia Resonante de Energía de Fluorescencia , Temperatura , Conformación Proteica
3.
Nat Commun ; 14(1): 6316, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813838

RESUMEN

Cell cycle transitions result from global changes in protein phosphorylation states triggered by cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites throughout unperturbed early cell cycles in single Xenopus embryos, derived the emergent principles through systems biology analysis, and tested them by biophysical modelling and biochemical experiments. We found that most dynamic phosphosites share two key characteristics: they occur on highly disordered proteins that localise to membraneless organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can switch homotypic interactions of such proteins between favourable and inhibitory modes for biomolecular condensate formation. These results provide insight into the molecular mechanisms and kinetics of mitotic cellular reorganisation.


Asunto(s)
Proteínas de Ciclo Celular , Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo
4.
J Chem Theory Comput ; 19(10): 2973-2984, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37133846

RESUMEN

All atom simulations can be used to quantify conformational properties of Intrinsically Disordered Proteins (IDP). However, simulations must satisfy convergence checks to ensure observables computed from simulation are reliable and reproducible. While absolute convergence is purely a theoretical concept requiring infinitely long simulation, a more practical, yet rigorous, approach is to impose Self Consistency Checks (SCCs) to gain confidence in the simulated data. Currently there is no study of SCCs in IDPs, unlike their folded counterparts. In this paper, we introduce different criteria for self-consistency checks for IDPs. Next, we impose these SCCs to critically assess the performance of different simulation protocols using the N terminal domain of HIV Integrase and the linker region of SARS-CoV-2 Nucleoprotein as two model IDPs. All simulation protocols begin with all-atom implicit solvent Monte Carlo (MC) simulation and subsequent clustering of MC generated conformations to create the representative structures of the IDPs. These representative structures serve as the initial structure for subsequent molecular dynamics (MD) runs with explicit solvent. We conclude that generating multiple short (∼3 µs) MD simulation trajectories─all starting from the most representative MC generated conformation─and merging them is the protocol of choice due to (i) its ability to satisfy multiple SCCs, (ii) consistently reproducing experimental data, and (iii) the efficiency of running independent trajectories in parallel by harnessing multiple cores available in modern GPU clusters. Running one long trajectory (greater than 20 µs) can also satisfy the first two criteria but is less desirable due to prohibitive computation time. These findings help resolve the challenge of identifying a usable starting configuration, provide an objective measure of SCC, and establish rigorous criteria to determine the minimum length (for one long simulation) or number of trajectories needed in all-atom simulation of IDPs.


Asunto(s)
COVID-19 , Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Conformación Proteica , SARS-CoV-2 , Solventes/química
5.
Biophys J ; 122(13): 2623-2635, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37218129

RESUMEN

Gene expression is inherently noisy due to small numbers of proteins and nucleic acids inside a cell. Likewise, cell division is stochastic, particularly when tracking at the level of a single cell. The two can be coupled when gene expression affects the rate of cell division. Single-cell time-lapse experiments can measure both fluctuations by simultaneously recording protein levels inside a cell and its stochastic division. These information-rich noisy trajectory data sets can be harnessed to learn about the underlying molecular and cellular details that are often not known a priori. A critical question is: How can we infer a model given data where fluctuations at two levels-gene expression and cell division-are intricately convoluted? We show the principle of maximum caliber (MaxCal)-integrated within a Bayesian framework-can be used to infer several cellular and molecular details (division rates, protein production, and degradation rates) from these coupled stochastic trajectories (CSTs). We demonstrate this proof of concept using synthetic data generated from a known model. An additional challenge in data analysis is that trajectories are often not in protein numbers, but in noisy fluorescence that depends on protein number in a probabilistic manner. We again show that MaxCal can infer important molecular and cellular rates even when data are in fluorescence, another example of CST with three confounding factors-gene expression noise, cell division noise, and fluorescence distortion-all coupled. Our approach will provide guidance to build models in synthetic biology experiments as well as general biological systems where examples of CSTs are abundant.


Asunto(s)
Modelos Biológicos , Proteínas , Teorema de Bayes , División Celular , Proteínas/metabolismo , Expresión Génica , Procesos Estocásticos
6.
Annu Rev Biophys ; 51: 355-376, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35119946

RESUMEN

In stark contrast to foldable proteins with a unique folded state, intrinsically disordered proteins and regions (IDPs) persist in perpetually disordered ensembles. Yet an IDP ensemble has conformational features-even when averaged-that are specific to its sequence. In fact, subtle changes in an IDP sequence can modulate its conformational features and its function. Recent advances in theoretical physics reveal a set of elegant mathematical expressions that describe the intricate relationships among IDP sequences, their ensemble conformations, and the regulation of their biological functions. These equations also describe the molecular properties of IDP sequences that predict similarities and dissimilarities in their functions and facilitate classification of sequences by function, an unmet challenge to traditional bioinformatics. These physical sequence-patterning metrics offer a promising new avenue for advancing synthetic biology at a time when multiple novel functional modes mediated by IDPs are emerging.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Matemática , Conformación Proteica
8.
Entropy (Basel) ; 23(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802879

RESUMEN

Learning the underlying details of a gene network with feedback is critical in designing new synthetic circuits. Yet, quantitative characterization of these circuits remains limited. This is due to the fact that experiments can only measure partial information from which the details of the circuit must be inferred. One potentially useful avenue is to harness hidden information from single-cell stochastic gene expression time trajectories measured for long periods of time-recorded at frequent intervals-over multiple cells. This raises the feasibility vs. accuracy dilemma while deciding between different models of mining these stochastic trajectories. We demonstrate that inference based on the Maximum Caliber (MaxCal) principle is the method of choice by critically evaluating its computational efficiency and accuracy against two other typical modeling approaches: (i) a detailed model (DM) with explicit consideration of multiple molecules including protein-promoter interaction, and (ii) a coarse-grain model (CGM) using Hill type functions to model feedback. MaxCal provides a reasonably accurate model while being significantly more computationally efficient than DM and CGM. Furthermore, MaxCal requires minimal assumptions since it is a top-down approach and allows systematic model improvement by including constraints of higher order, in contrast to traditional bottom-up approaches that require more parameters or ad hoc assumptions. Thus, based on efficiency, accuracy, and ability to build minimal models, we propose MaxCal as a superior alternative to traditional approaches (DM, CGM) when inferring underlying details of gene circuits with feedback from limited data.

9.
Biophys J ; 120(10): 1860-1868, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33865811

RESUMEN

Functionally similar IDPs (intrinsically disordered proteins) often have little sequence similarity. This is in stark contrast to folded proteins and poses a challenge for the inverse problem, functional classification of IDPs using sequence alignment. The problem is further compounded because of the lack of structure in IDPs, preventing structural alignment as an alternate tool for classification. Recent advances in heteropolymer theory unveiled a powerful set of sequence-patterning metrics bridging molecular interaction with chain conformation. Focusing only on charge patterning, these set of metrics yield a sequence charge decoration matrix (SCDM). SCDMs can potentially identify functionally similar IDPs not apparent from sequence alignment alone. Here, we illustrate how these information-rich "molecular blueprints" encoded in SCDMs can be used for functional classification of IDPs with specific application in three protein families-Ste50, PSC, and RAM-in which electrostatics is known to be important. For both the Ste50 and PSC protein family, the set of metrics appropriately classifies proteins in functional and nonfunctional groups in agreement with experiment. Furthermore, our algorithm groups synthetic variants of the disordered RAM region of the Notch receptor protein-important in gene expression-in reasonable accordance with classification based on experimentally measured binding constants of RAM and transcription factor. Taken together, the novel classification scheme reveals the critical role of a high-dimensional set of metrics-manifest in self-interaction maps and topology-in functional annotation of IDPs even when there is low sequence homology, providing the much-needed alternate to a traditional sequence alignment tool.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/genética , Conformación Proteica , Receptores Notch , Alineación de Secuencia , Electricidad Estática
10.
Biophys J ; 119(6): 1045-1047, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32853561
11.
J Chem Phys ; 152(16): 161102, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32357776

RESUMEN

Intrinsically Disordered Proteins (IDPs), unlike folded proteins, lack a unique folded structure and rapidly interconvert among ensembles of disordered states. However, they have specific conformational properties when averaged over their ensembles of disordered states. It is critical to develop a theoretical formalism to predict these ensemble average conformational properties that are encoded in the IDP sequence (the specific order in which amino acids/residues are linked). We present a general heteropolymer theory that analytically computes the ensemble average distance profiles (⟨Rij 2⟩) between any two (i, j) monomers (amino acids for IDPs) as a function of the sequence. Information rich distance profiles provide a detailed description of the IDP in contrast to typical metrics such as scaling exponents, radius of gyration, or end-to-end distance. This generalized formalism supersedes homopolymer-like models or models that are built only on the composition of amino acids but ignore sequence details. The prediction of these distance profiles for highly charged polyampholytes and naturally occurring IDPs unmasks salient features that are hidden in the sequence. Moreover, the model reveals strategies to modulate the entire distance map to achieve local or global swelling/compaction by subtle changes/modifications-such as phosphorylation, a biologically relevant process-in specific hotspots in the sequence. Sequence-specific distance profiles and their modulation have been benchmarked against all-atom simulations. Our new formalism also predicts residue-pair specific coil-globule transitions. The analytical nature of the theory will facilitate design of new sequences to achieve specific target distance profiles with broad applications in synthetic biology and polymer science.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/análisis , Simulación de Dinámica Molecular , Polímeros/análisis , Aminoácidos/química , Método de Montecarlo , Conformación Proteica , Pliegue de Proteína , Electricidad Estática
12.
Annu Rev Phys Chem ; 71: 213-238, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32075515

RESUMEN

Ever since Clausius in 1865 and Boltzmann in 1877, the concepts of entropy and of its maximization have been the foundations for predicting how material equilibria derive from microscopic properties. But, despite much work, there has been no equally satisfactory general variational principle for nonequilibrium situations. However, in 1980, a new avenue was opened by E.T. Jaynes and by Shore and Johnson. We review here maximum caliber, which is a maximum-entropy-like principle that can infer distributions of flows over pathways, given dynamical constraints. This approach is providing new insights, particularly into few-particle complex systems, such as gene circuits, protein conformational reaction coordinates, network traffic, bird flocking, cell motility, and neuronal firing.


Asunto(s)
ADN/química , Redes Reguladoras de Genes , Modelos Teóricos , Proteínas/química , ADN/genética , Entropía , Cinética , Modelos Químicos , Modelos Genéticos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas/genética
13.
J Chem Phys ; 152(4): 045102, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32007034

RESUMEN

The physical chemistry of liquid-liquid phase separation (LLPS) of polymer solutions bears directly on the assembly of biologically functional dropletlike bodies from proteins and nucleic acids. These biomolecular condensates include certain extracellular materials and intracellular compartments that are characterized as "membraneless organelles." Analytical theories are a valuable, computationally efficient tool for addressing general principles. LLPS of neutral homopolymers is quite well described by theory, but it has been a challenge to develop general theories for the LLPS of heteropolymers involving charge-charge interactions. Here, we present a theory that combines a random-phase-approximation treatment of polymer density fluctuations and an account of intrachain conformational heterogeneity based on renormalized Kuhn lengths to provide predictions of LLPS properties as a function of pH, salt, and charge patterning along the chain sequence. Advancing beyond more limited analytical approaches, our LLPS theory is applicable to a wide variety of charged sequences ranging from highly charged polyelectrolytes to neutral or nearly neutral polyampholytes. This theory should be useful in high-throughput screening of protein and other sequences for their LLPS propensities and can serve as a basis for more comprehensive theories that incorporate nonelectrostatic interactions. Experimental ramifications of our theory are discussed.


Asunto(s)
Biopolímeros/química , Modelos Químicos , Polielectrolitos/química , Polímeros/química , Tampones (Química) , Ensayos Analíticos de Alto Rendimiento , Extracción Líquido-Líquido/métodos
14.
Biophys J ; 118(1): 85-95, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31757359

RESUMEN

Holdase chaperones are known to be central to suppressing aggregation, but how they affect substrate conformations remains poorly understood. Here, we use optical tweezers to study how the holdase Hsp33 alters folding transitions within single maltose binding proteins and aggregation transitions between maltose binding protein substrates. Surprisingly, we find that Hsp33 not only suppresses aggregation but also guides the folding process. Two modes of action underlie these effects. First, Hsp33 binds unfolded chains, which suppresses aggregation between substrates and folding transitions within substrates. Second, Hsp33 binding promotes substrate states in which most of the chain is folded and modifies their structure, possibly by intercalating its intrinsically disordered regions. A statistical ensemble model shows how Hsp33 function results from the competition between these two contrasting effects. Our findings reveal an unexpectedly comprehensive functional repertoire for Hsp33 that may be more prevalent among holdases and dispels the notion of a strict chaperone hierarchy.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Modelos Moleculares
16.
Protein Sci ; 28(7): 1324-1339, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31074892

RESUMEN

The effect of mutations in individual proteins on protein homeostasis, or "proteostasis," can in principle depend on the mutations' effects on the thermodynamics or kinetics of folding, or both. Here, we explore this issue using a computational model of in vivo protein folding that we call FoldEcoSlim. Our model predicts that kinetic versus thermodynamic control of mutational effects on proteostasis hinges on the relationship between how fast a protein's folding reaction reaches equilibrium and a critical time scale that characterizes the lifetime of a protein in its environment: for rapidly dividing bacteria, this time scale is that of cell division; for proteins that are produced in heterologous expression systems, this time scale is the amount of time before the protein is harvested; for proteins that are synthesized in and then exported from the eukaryotic endoplasmic reticulum, this time scale is that of protein secretion, and so forth. This prediction was validated experimentally by examining the expression yields of the wild type and several destabilized mutants of a model protein, the mouse ortholog of cellular retinoic acid-binding protein 1.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Termodinámica , Retículo Endoplásmico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Homeostasis , Cinética , Modelos Moleculares , Mutación , Pliegue de Proteína
18.
J Phys Chem B ; 123(2): 343-355, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30507199

RESUMEN

Single-cell protein expression time trajectories provide rich temporal data quantifying cellular variability and its role in dictating fitness. However, theoretical models to analyze and fully extract information from these measurements remain limited for three reasons: (i) gene expression profiles are noisy, rendering models of averages inapplicable, (ii) experiments typically measure only a few protein species while leaving other molecular actors-necessary to build traditional bottom-up models-unnoticed, and (iii) measured data are in fluorescence, not particle number. We recently addressed these challenges in an alternate top-down approach using the principle of Maximum Caliber (MaxCal) to model genetic switches with one and two protein species. In the present work we address scalability and broader applicability of MaxCal by extending to a three-gene (A, B, C) feedback network that exhibits oscillation, commonly known as the repressilator. We test MaxCal's inferential power by using synthetic data of noisy protein number time traces-serving as a proxy for experimental data-generated from a known underlying model. We notice that the minimal MaxCal model-accounting for production, degradation, and only one type of symmetric coupling between all three species-reasonably infers several underlying features of the circuit such as the effective production rate, degradation rate, frequency of oscillation, and protein number distribution. Next, we build models of higher complexity including different levels of coupling between A, B, and C and rigorously assess their relative performance. While the minimal model (with four parameters) performs remarkably well, we note that the most complex model (with six parameters) allowing all possible forms of crosstalk between A, B, and C slightly improves prediction of rates, but avoids ad hoc assumption of all the other models. It is also the model of choice based on Bayesian information criteria. We further analyzed time trajectories in arbitrary fluorescence (using synthetic trajectories) to mimic realistic data. We conclude that even with a three-protein system including both fluorescence noise and intrinsic gene expression fluctuations, MaxCal can faithfully infer underlying details of the network, opening future directions to model other network motifs with many species.


Asunto(s)
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Teorema de Bayes , Proteínas/genética
19.
J Chem Phys ; 149(8): 085101, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30193467

RESUMEN

We present an analytical theory to describe conformational changes as a function of salt for polymers with a given sequence of charges. We apply this model to describe Intrinsically Disordered Proteins (IDPs) by explicitly accounting for charged residues and their exact placement in the primary sequence while approximating the effect of non-electrostatic interactions at a mean-field level by effective short-range (two body and three-body) interaction parameters. The effect of ions is introduced by treating electrostatic interactions within Debye-Huckle approximation. Using typical values of the short-range mean-field parameters derived from all-atom Monte Carlo simulations (at zero salt), we predict the conformational changes as a function of salt concentration. We notice that conformational transitions in response to changes in ionic strength strongly depend on sequence specific charge patterning. For example, globule to coil transition can be observed upon increasing salt concentration, in stark contrast to uniformly charged polyelectrolyte theories based on net charge only. In addition, it is possible to observe non-monotonic behavior with salt as well. Drastic differences in salt-induced conformational transitions is also evident between two doubly phosphorylated sequences-derived from the same wild type sequence-that only differ in the site of phosphorylation. Similar effects are also predicted between two sequences derived from the same parent sequence differing by a single site mutation where a negative charge is replaced by a positive charge. These effects are purely a result of charge decoration and can only be understood in terms of metrics based on specific placement of charges, and cannot be explained by models based on charge composition alone. Identifying sequences and hot spots within sequences-for post translational modification or charge mutation-using our high-throughput theory will yield fundamental insights into design and biological regulation mediated by phosphorylation and/or local changes in salt concentration.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Modelos Químicos , Conformación Proteica , Método de Montecarlo , Concentración Osmolar , Tamaño de la Partícula , Fosforilación , Cloruro de Sodio/química , Electricidad Estática , Temperatura
20.
Artículo en Inglés | MEDLINE | ID: mdl-29735738

RESUMEN

Thioredoxins (THRXs)-small globular proteins that reduce other proteins-are ubiquitous in all forms of life, from Archaea to mammals. Although ancestral thioredoxins share sequential and structural similarity with the modern-day (extant) homologues, they exhibit significantly different functional activity and stability. We investigate this puzzle by comparative studies of their (ancient and modern-day THRXs') native state ensemble, as quantified by the dynamic flexibility index (DFI), a metric for the relative resilience of an amino acid to perturbations in the rest of the protein. Clustering proteins using DFI profiles strongly resemble an alternative classification scheme based on their activity and stability. The DFI profiles of the extant proteins are substantially different around the α3, α4 helices and catalytic regions. Likewise, allosteric coupling of the active site with the rest of the protein is different between ancient and extant THRXs, possibly explaining the decreased catalytic activity at low pH with evolution. At a global level, we note that the population of low-flexibility (called hinges) and high-flexibility sites increases with evolution. The heterogeneity (quantified by the variance) in DFI distribution increases with the decrease in the melting temperature typically associated with the evolution of ancient proteins to their modern-day counterparts.This article is part of a discussion meeting issue 'Allostery and molecular machines'.


Asunto(s)
Evolución Molecular , Tiorredoxinas/química , Dominio Catalítico , Modelos Moleculares , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA