Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Oncol ; 26(7): 1716-1724, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38472557

RESUMEN

PURPOSE: Ovarian carcinoma (OC) is ranked as the eighth most lethal gynecological cancer due to late diagnosis and high recurrence. Existing biomarkers are lacking to predict the recurrence and stratify patients who are likely to benefit from chemotherapy. MicroRNAs (miRNAs/miRs) are persistently present in humans and are capable of predicting treatment outcomes. Thus, the purpose of the study was to assess the potential of circulatory miRNAs to predict the efficacy of OC. METHODS: Newly diagnosed n = 208 OC patients were administrated neoadjuvant/adjuvant chemotherapy (taxane + platinum) after surgery. Their demographic, gynecologic, clinical parameters, response, and survival were recorded. MiR-27a, miR-182, miR-199a, miR-214, and miR-591 were taken and the expression were analyzed using real-time PCR at different treatment intervals. Further, its prognostic value (Kaplan-Meier, and Cox regression analysis) and diagnostic importance (receiver operating characteristic curve) were validated. RESULT: The mean age of patients with poorly differentiated (45.2%) serous OC was 48.69 ± 10.38. The majority experienced menarche at ≥ 12 (62.2%) with poor menstrual hygiene (81.8%) and were post-menopausal (69.4%), some were associated with high risk of survival (HR = > 1). MiRNA signature showed three over-expression and two under-expression (miR-27a, miR-182, and miR-214; miR-199a and miR-591) in advanced OC compared to the control (P= < 0.05). Also, a significant difference was detected at each time interval of treatment with the response (P = ≤ 0.001) associated with resistance and overall survival (P = ≤ 0.001) with risk (HR = > 1). ROC analysis showed enhanced the diagnostics accuracy (< 0.001). CONCLUSION: Our findings indicate that circulating miRNAs might be a potential minimally invasive diagnostic marker for treatment outcome and recurrence in ovarian carcinoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores de Tumor , Neoplasias Ováricas , Humanos , Femenino , Persona de Mediana Edad , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/sangre , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , MicroARN Circulante/sangre , Adulto , Taxoides/administración & dosificación , Taxoides/uso terapéutico , Terapia Neoadyuvante , MicroARNs/sangre , Quimioterapia Adyuvante , Anciano , Tasa de Supervivencia , Curva ROC , Estimación de Kaplan-Meier
2.
Differentiation ; 136: 100756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38471281

RESUMEN

Heart failure has become a major life-threatening cause affecting millions globally, characterized by the permanent loss of adult functional cardiomyocytes leading to fibrosis which ultimately deprives the heart of its functional efficacy. Here we investigated the reparative property of embryonic and adult epicardial cells towards cardiomyocyte differentiation under oxidative stress-induced conditions along with the identification of a possible molecular signaling pathway. Isolated epicardial cells from embryonic chick hearts subjected to oxidative stress and hypoxia induction. Initial assessment of successful injury induction reveals hypertrophy of isolated epicardial cells. Detailed marker gene expression analyses and inhibitor studies reveal Bone morphogenic protein (Bmp)2-Smad1/5/8 signaling dependent cardiomyocyte lineage specification via epithelial to mesenchymal transition (EMT) post-injury. EMT is further confirmed by increased proliferation, migration, and differentiation towards cardiomyocyte lineage. We have also established an in-vivo model in adult male rats using Isoproterenol. Successful oxidative stress-mediated injury induction in adult heart was marked by increased activated fibroblasts followed by apoptosis of adult cardiomyocytes. The detailed characterization of adult epicardial cells reveals similar findings to our avian in-vitro data. Both in-vitro and in-vivo results show a significant increase in the expression of cardiomyocyte specific markers indicative of lineage specificity and activation of epicardial cells post oxidative stress mediated injury. Our findings suggest an EMT-induced reactivation of epicardial cells and early cardiomyocyte lineage specification following oxidative stress in a Bmp2- Smad1/5/8 dependent manner. Overall, this regulatory mechanism of cardiomyocyte differentiation induced by oxidative stress may contribute to the field of cardiac repair and regenerative therapeutics.


Asunto(s)
Transición Epitelial-Mesenquimal , Miocitos Cardíacos , Masculino , Ratas , Animales , Miocitos Cardíacos/metabolismo , Transición Epitelial-Mesenquimal/genética , Diferenciación Celular/genética , Transducción de Señal , Células Cultivadas , Proteína Smad1/genética , Proteína Smad1/metabolismo
3.
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593639

RESUMEN

PRAMEF2 is a member of the PRAME multigene family of cancer testis antigens, which serve as prognostic markers for several cancers. However, molecular mechanisms underlying its role in tumorigenesis remain poorly understood. Here, we report that PRAMEF2 is repressed under conditions of altered metabolic homeostasis in a FOXP3-dependent manner. We further demonstrate that PRAMEF2 is a BC-box containing substrate recognition subunit of Cullin 2-based E3 ubiquitin ligase complex. PRAMEF2 mediates polyubiquitylation of LATS1 kinase of the Hippo/YAP pathway, leading to its proteasomal degradation. The site for ubiquitylation was mapped to the conserved Lys860 residue in LATS1. Furthermore, LATS1 degradation promotes enhanced nuclear accumulation of the transcriptional coactivator YAP, resulting in increased expression of proliferative and metastatic genes. Thus, PRAMEF2 promotes malignant phenotype in a YAP-dependent manner. Additionally, elevated PRAMEF2 levels correlate with increased nuclear accumulation of YAP in advanced grades of breast carcinoma. These findings highlight the pivotal role of PRAMEF2 in tumorigenesis and provide mechanistic insight into YAP regulation.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Proteínas de Ciclo Celular/genética , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Humanos , Células MCF-7 , Ratones , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Ubiquitinación/genética
6.
Indian J Psychiatry ; 63(6): 603-605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35136261
8.
Sci Rep ; 6: 25975, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27185415

RESUMEN

Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.


Asunto(s)
Expresión Génica , Redes Reguladoras de Genes , Biología de Sistemas/métodos , Ingravidez , Asma/genética , Autoinmunidad , Bases de Datos Genéticas , Diabetes Mellitus/genética , Regulación de la Expresión Génica , Humanos , Inflamación/genética , FN-kappa B/genética , Neoplasias/genética , Receptor Notch1/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...