Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(17): 5139-5145, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639471

RESUMEN

Dynamic tuning of thermal transport in solids is scientifically intriguing with wide applications for thermal transport control in electronic devices. In this work, we demonstrate a thermal transistor, a device in which heat flow can be regulated using external control, realized in a topological insulator (TI) through the topological surface states. The tuning of thermal transport is achieved by using optical gating of a thin dielectric layer deposited on the TI film. The gate-dependent thermal conductivity is measured using micro-Raman thermometry. The transistor has a large ON/OFF ratio of 2.8 at room temperature and can be continuously and repetitively switched in tens of seconds by optical gating and potentially much faster by electrical gating. Such thermal transistors with a large ON/OFF ratio and fast switching times offer the possibilities of smart thermal devices for active thermal management and control in future electronic systems.

2.
Nano Lett ; 23(8): 3599-3606, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37057864

RESUMEN

Chirality arises from the asymmetry of materials, where two counterparts are the mirror image of each other. The interaction between circular-polarized light and quantum materials is enhanced in chiral space groups due to the structural chirality. Tellurium (Te) possesses the simplest chiral crystal structure, with Te atoms covalently bonded into a spiral atomic chain (left- or right-handed) with a periodicity of 3. Here, we investigate the tunable circular photoelectric responses in 2D Te field-effect transistors with different chirality, including the longitudinal circular photogalvanic effect induced by the radial spin texture (electron-spin polarization parallel to the electron momentum direction) and the circular photovoltaic effect induced by the chiral crystal structure (helical Te atomic chains). Our work demonstrates the controllable manipulation of the chirality degree of freedom in materials.

3.
Front Cell Neurosci ; 16: 969261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187291

RESUMEN

Injury to the adult mammalian central nervous system induces compensatory plasticity of spared axons-referred to as collateral axon sprouting-that can facilitate neural recovery. The contribution of reactive astrocytes to axon sprouting remains elusive. Here, we sought to investigate the role of axon degeneration-reactive astrocytes in the regulation of collateral axon sprouting that occurs in the mouse spinal cord after unilateral photothrombotic stroke of the primary motor cortex. We identified astrocytic leucine zipper-bearing kinase (LZK) as a positive regulator of astrocyte reactivity to corticospinal axon degeneration. Remarkably, genetic stimulation of astrocyte reactivity, via LZK overexpression in adult astrocytes, enhanced corticospinal axon sprouting. LZK promoted the production of astrocyte-derived ciliary neurotrophic factor (CNTF) that likely enhanced axon growth in mice with astrocytic LZK overexpression after injury. Our finding that LZK-dependent stimulation of astrocyte reactivity promotes corticospinal axon sprouting highlights the potential of engineering astrocytes to support injury-induced axon plasticity for neural repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA