Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 21(1): 10-25, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33296219

RESUMEN

A microbubble nucleated due to the absorption of a tightly focused laser at the interface of a liquid-solid substrate enables directed and irreversible self-assembly of mesoscopic particles dispersed in the liquid at the bubble base. This phenomenon has facilitated a new microlithography technique which has grown rapidly over the past decade and can now reliably pattern a vast range of soft materials and colloids, ranging from polymers to metals to proteins. In this review, we discuss the science behind this technology and the present state-of-the-art. Thus, we describe the physics of the self-assembly driven by the bubble, the techniques for generating complex mesoarchitectures, both discrete and continuous, and their properties, and the various applications demonstrated in plastic electronics, site-specific catalysis, and biosensing. Finally, we describe a roadmap for the technique to achieve its potential of successfully patterning "everything" mesoscopic and the challenges that lie therein.

2.
Soft Matter ; 15(23): 4703-4713, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31119243

RESUMEN

We demonstrate that the active thermocapillary stresses induced by multiple microbubbles offer simple routes to directed self-assembly and complex but controllable micromanipulation of mesoscopic colloidal particles embedded in a liquid. The microbubbles are nucleated on a liquid-glass interface using optical tweezers. The flow around a single bubble causes self-assembly of the particles in rings at the bubble-base, while an asymmetric temperature profile generated across the bubble interface breaks the azimuthal symmetry of the flow, and induces simultaneous accumulation and repulsion of particles at different axial planes with respect to the bubble. The flow due to two adjacent bubbles leads to more diverse effects including the sorting of particles, and to local vorticity that causes radial and axial rotation of the particles - the latter being obtained for the first time using optical tweezers. The sorting is enabled by nucleating the bubbles on spatially discrete temperature profiles, while the vorticity is generated by nucleating them in the presence of a temperature gradient which once again causes a strong symmetry-breaking in the azimuthal flow. The flow profiles obtained in the experiments are explained by analytical solutions or qualitative explanations of the associated thermocapillary problem employing the Stokes and heat equations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA